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Abstract 

As construction projects become increasingly complex, traditional forecasting methods struggle to 

capture the dynamic interdependencies affecting project performance. This study explores the 

application of advanced machine learning models—Random Forests and Neural Networks—to predict 

key project outcomes, including cost overruns, schedule delays, quality deviations, and safety risks. 

Using a synthetically generated dataset of 1,000 construction projects, designed to mimic real-world 

variability through probabilistic sampling and Monte Carlo simulations, the study evaluates the 

predictive capabilities of these machine learning techniques compared to conventional approaches, 

namely the Critical Path Method (CPM) and Earned Value Management (EVM). The findings 

demonstrate that Random Forests achieved the highest predictive accuracy, with the lowest Root Mean 

Squared Error (RMSE) for cost and schedule forecasting, along with superior precision and recall in 

identifying safety risks. Neural Networks also outperformed traditional methods, though with slightly 

higher RMSE values, likely due to the challenges associated with deep learning optimization on 

simulated datasets. In contrast, CPM and EVM exhibited significantly higher prediction errors, 

reflecting their limitations in adapting to the multifactorial and uncertain nature of modern construction 

projects. These results underscore the potential of machine learning models to enhance predictive 

accuracy, optimize decision-making, and improve risk mitigation strategies in construction project 

management. To further validate their effectiveness, future research should apply these models to real-

world construction datasets and explore the integration of additional machine learning techniques such 

as Gradient Boosting Machines (GBMs) and Support Vector Machines (SVMs). 
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1. Introduction 

The construction industry, being one of the largest and most intricate sectors globally, is known 

for its significant complexity and variability in project performance [1]. Each project is influenced by a 

wide range of factors such as cost, time, quality, and environmental conditions, making it challenging 

to predict project outcomes accurately [2]. Traditional project management methodologies, including 

the Critical Path Method (CPM) and Earned Value Management (EVM), have long been the standard 

tools for performance prediction [3]. While these methods provide valuable insights, they often fail to 

adequately address the dynamic and multifaceted nature of modern construction projects, especially 

when applied to large, complex environments [4]. The need for more advanced and data-driven 

techniques has become increasingly evident, particularly as the construction industry faces mounting 

pressure to improve efficiency and reduce cost and time overruns [5]. 

Machine learning (ML), a branch of artificial intelligence (AI), has demonstrated significant 

promise in predictive analytics across various sectors, including healthcare, finance, and manufacturing 

[6]. In construction, machine learning techniques are emerging as valuable tools for predicting project 

outcomes more accurately by processing vast amounts of data and identifying intricate patterns that 
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traditional models cannot [7]. For instance, ML models such as Random Forests and Neural Networks 

have been applied to forecast key performance metrics such as cost, schedule adherence, and project 

quality, with promising results [8]. By leveraging historical project data and incorporating complex 

variables, machine learning models provide a more robust framework for managing the inherent 

uncertainty in construction projects [9]. 

The construction industry continues to grapple with significant inefficiencies, often stemming 

from the inability to accurately predict project performance in complex environments. Inaccurate 

predictions frequently lead to cost overruns, schedule delays, and compromised quality, all of which 

can erode profitability and damage stakeholder relationships [10]. Traditional forecasting models, 

though valuable, are limited in their capacity to capture the highly dynamic interactions between 

multiple project variables [11]. For example, environmental factors such as weather conditions, 

resource availability, and unforeseen disruptions can drastically affect project timelines and costs, 

making it difficult for conventional methods to maintain accurate predictions [9, 12]. This complexity 

underscores the need for more advanced predictive models that can process large, multifactorial datasets 

while adjusting dynamically to changing project conditions [13]. 

The adoption of machine learning in construction project management addresses these 

challenges by offering predictive models that not only account for historical data but also adapt to real-

time changes [14]. Advanced machine learning models can outperform traditional methods by 

identifying non-linear relationships among project variables, enabling project managers to make data-

driven decisions and mitigate risks more effectively [4, 15]. The primary objective of this study is to 

investigate the potential of advanced machine learning models, specifically Random Forests and Neural 

Networks, in predicting project performance in complex construction environments. The study aims to 

assess the accuracy of these models in forecasting key performance metrics, including cost, schedule 

adherence, and quality, compared to traditional methods [16]. 

The research focused on simulating construction project data, representing typical project 

parameters such as cost, schedule adherence, environmental conditions (e.g., weather and resource 

availability), and quality metrics [6]. A dataset of 1,000 simulated construction projects was generated, 

incorporating both predicted and actual performance outcomes to evaluate the models' effectiveness. 

Machine learning models such as Random Forests and Neural Networks were developed and tested on 

this dataset, with their performance evaluated based on metrics like accuracy, precision, and mean 

squared error. The study compared these results to predictions made using traditional methods like CPM 

and EVM to illustrate the improvements machine learning can offer in handling complex construction 

environments [17]. 

Accurate prediction of project performance is vital for optimizing resource allocation, reducing 

risks, and ensuring successful project delivery in the construction industry. Traditional prediction 

methods have well-known limitations when it comes to dealing with complex and dynamic 

environments [7]. Machine learning models provide a promising alternative by incorporating advanced 

data processing techniques and identifying relationships that are often too complex for conventional 

methods to capture [18]. This study contributes to the growing body of literature by demonstrating how 

advanced machine learning techniques can significantly improve project performance predictions, 

enabling construction managers to better plan, forecast, and manage resources [8]. The findings from 

this research are expected to inform the development of more sophisticated project management tools 

that integrate machine learning algorithms. This, in turn, will enhance the decision-making process, 

allowing for more accurate and reliable project performance predictions in complex construction 

environments [19]. 

2. Literature Review 

2.1 Traditional Methods for Project Performance Prediction 
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For decades, traditional project management techniques such as the Critical Path Method 

(CPM) and Earned Value Management (EVM) have been used extensively to predict construction 

project performance. CPM is a deterministic technique that identifies the longest sequence of activities 

necessary to complete a project, referred to as the "critical path" [20]. While this method is useful for 

scheduling, it is limited by its inability to address uncertainties such as resource limitations and 

unexpected delays, both of which are prevalent in large-scale construction projects [21]. Furthermore, 

CPM does not consider external factors, such as weather conditions or changes in resource availability, 

which can disrupt construction schedules [22]. 

Earned Value Management (EVM) is another popular approach that integrates cost, schedule, 

and performance metrics to track a project's progress in real-time [23]. EVM enables project managers 

to evaluate performance against baselines and provides valuable insights into potential cost overruns or 

schedule delays. However, EVM is retrospective in nature, primarily relying on past performance data 

to make predictions about the future. This limits its ability to foresee sudden changes in project 

conditions, and it struggles to handle non-linear, complex relationships between variables [24]. Several 

studies have pointed out that EVM, while valuable for monitoring, is insufficient for accurately 

predicting future project outcomes, especially in large, multifaceted construction projects [25, 26]. 

Recognizing the shortcomings of these traditional approaches, construction researchers have begun to 

explore more advanced data-driven models, specifically machine learning techniques, to improve 

project performance prediction accuracy in complex environments [27]. 

2.2 The Rise of Machine Learning in Construction Project Management 

Machine learning (ML) has emerged as a powerful tool in construction project management, 

offering enhanced capabilities for processing vast amounts of data and uncovering intricate 

relationships between variables. Unlike traditional methods that rely on fixed assumptions and linear 

models, ML algorithms learn from historical data and can dynamically adjust predictions based on new 

inputs [28]. ML techniques have been shown to outperform traditional methods in predicting 

construction outcomes such as cost, schedule adherence, and project quality, primarily due to their 

flexibility and ability to adapt to complex environments [29]. Random Forests, a popular ensemble 

machine learning method, is one of the most widely used models in the construction industry. By 

combining multiple decision trees, Random Forests minimize overfitting and improve predictive 

accuracy [20]. Several studies have demonstrated the effectiveness of Random Forests in predicting 

project delays and cost overruns. For instance, one study applied Random Forest models to a dataset of 

large-scale construction projects and found that the algorithm significantly outperformed CPM in terms 

of prediction accuracy, particularly for complex infrastructure projects [21]. 

Neural Networks, particularly deep learning models, have also gained traction in construction 

project management due to their ability to handle non-linear, complex datasets. Neural Networks are 

particularly useful for modeling intricate relationships between variables, such as how labor availability 

and environmental conditions impact project timelines [24]. Convolutional Neural Networks (CNNs) 

have been applied to analyze construction site images and predict project performance by monitoring 

real-time conditions [26]. One study used a CNN model to predict construction delays by integrating 

weather data, resource availability, and project complexity, demonstrating superior accuracy compared 

to traditional forecasting methods and providing actionable insights for project managers [30]. Support 

Vector Machines (SVMs), another powerful supervised learning model, have been applied in 

construction to classify projects based on their likelihood of on-time completion or delay. Studies have 

demonstrated the effectiveness of SVM in classifying high-risk and low-risk construction projects based 

on historical performance data, and it has performed particularly well in smaller datasets, offering a 

viable alternative to Random Forests in certain scenarios [27]. 

2.3 Advanced Machine Learning Techniques in Construction 
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Beyond supervised models like Random Forests and Neural Networks, more advanced machine 

learning techniques have been developed to handle the complexities of modern construction projects. 

These techniques, including unsupervised learning and deep learning models, are particularly valuable 

in discovering hidden patterns, making predictions with unstructured data, and improving the robustness 

of project performance forecasts. 

2.3.1 Supervised Learning Models 

Supervised learning models, where the algorithm is trained on labeled data, are widely used in 

construction for performance prediction. Random Forests and Support Vector Machines (SVMs) are 

particularly popular in construction management due to their flexibility and high accuracy in predicting 

outcomes such as cost overruns and schedule delays [24]. Random Forest models, which use an 

ensemble of decision trees, have demonstrated superior accuracy in handling complex, multi-variable 

datasets compared to traditional methods [23]. For example, one study found that Random Forest 

models achieved over 85% accuracy in predicting cost overruns by analyzing initial project budgets, 

resource constraints, and environmental factors [28]. Similarly, SVM models have proven effective for 

binary classification tasks, such as predicting whether a project will be completed on time or delayed. 

In construction projects where data is limited, SVM has shown strong performance due to its ability to 

create clear decision boundaries based on limited data inputs [27]. This makes it particularly useful in 

early-stage project planning, where detailed data may not yet be available. 

2.3.2 Unsupervised Learning Models 

Unsupervised learning models, which do not rely on labeled data, are also gaining attention in 

construction project management. These models are valuable for discovering underlying patterns and 

relationships in project performance data without predefined categories or labels [31]. K-Means 

Clustering and Anomaly Detection are commonly used unsupervised learning techniques that have been 

applied to segment projects based on similarities in performance or to identify outliers, which may 

indicate projects at risk of failure. For example, anomaly detection algorithms can flag projects that 

deviate significantly from expected performance metrics, allowing project managers to intervene before 

issues escalate [32]. This technique is especially useful in identifying early warning signs of delays or 

cost overruns, offering a proactive approach to project management that is often missing in traditional 

methods [24]. 

2.3.3 Deep Learning Models 

Deep learning, a subset of machine learning, has emerged as a leading approach for handling 

large, unstructured datasets in construction. Recurrent Neural Networks (RNNs) and Convolutional 

Neural Networks (CNNs) are two of the most frequently used deep learning models in construction. 

RNNs excel in handling sequential data, such as time-series information on project performance. These 

models are particularly effective in predicting project outcomes that evolve over time, such as the 

cumulative effect of delays on future project milestones [27]. In a study by Martinez et al. [33], RNNs 

were applied to predict project completion times based on historical project data and environmental 

conditions. The model demonstrated significantly higher accuracy than traditional forecasting 

techniques, particularly for projects with fluctuating conditions such as labor availability and weather 

disruptions. CNNs, typically used for image and video analysis, have also been applied in construction 

for real-time monitoring of construction sites. CNN models can process drone footage or camera images 

from construction sites to assess progress, identify safety hazards, and predict delays [26]. 

2.4 Challenges in Applying Machine Learning to Construction Projects 

Despite the growing adoption of machine learning models in construction, several challenges 

remain that limit their widespread implementation. One of the primary challenges is data availability 

and quality. Many construction firms lack the infrastructure necessary to collect and manage the 
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extensive datasets required for training machine learning models [34]. Much of the data generated 

during construction projects is unstructured (e.g., reports, images, sensor data), making it difficult to 

preprocess and use in machine learning models without significant effort [23]. 

Another key challenge is model interpretability. Deep learning models, in particular, are often 

referred to as "black boxes" because their internal decision-making processes are difficult to interpret. 

This lack of transparency can be problematic for construction managers, who need to understand the 

reasoning behind predictions to make informed decisions [22]. This challenge has led to growing 

interest in developing explainable AI (XAI) techniques to improve the interpretability of machine 

learning models in construction [35]. Lastly, adaptability is a critical concern in the dynamic and fast-

paced construction environment. Construction projects are subject to frequent changes in scope, 

external conditions, and resource availability. While machine learning models can adapt to new data, 

ensuring that they remain accurate over the course of a project requires continuous retraining and 

updating, which can be resource-intensive [24]. Further research is needed to develop more adaptive 

models that can seamlessly adjust to changing project conditions without the need for extensive manual 

intervention [27]. 

3. Methodology 

3.1 Research Design 

This study employed a quantitative research design to investigate the effectiveness of machine 

learning models in predicting project performance within complex construction environments. The 

primary objective was to compare advanced machine learning techniques, specifically Random Forests 

and Neural Networks, with traditional project management tools such as the Critical Path Method 

(CPM) and Earned Value Management (EVM). The study sought to assess the ability of these models 

to predict key project performance indicators, including cost overruns, schedule adherence, quality, and 

safety risks. In order to ensure a robust and controlled evaluation, a synthetic dataset was generated that 

mimicked real-world project characteristics by incorporating probabilistic distributions and stochastic 

modeling techniques. This dataset enabled an objective statistical comparison of machine learning 

models against conventional approaches, providing insights into their predictive power and reliability 

[25, 36]. 

3.2 Data Collection 

The study was based on a synthetic dataset due to the limited availability of large-scale, real-

world construction data. The dataset was designed to simulate a diverse range of construction projects 

exhibiting various performance outcomes, including cost overruns, schedule delays, and safety 

incidents. A total of 1,000 hypothetical construction projects were generated, ensuring sufficient 

diversity in project attributes to reflect real-world scenarios. Each project was assigned key 

characteristics such as estimated cost, actual cost, planned and actual schedule, project complexity, 

weather conditions, labor availability, quality scores, and safety incidents. These attributes were chosen 

based on their well-established influence on construction project success and their frequent 

consideration in prior research on project performance forecasting [33]. 

In order to enhance the realism of the dataset, a probabilistic sampling technique was employed 

to assign values to project attributes. Cost overruns were simulated using a normal distribution with a 

mean overrun of 10% and a standard deviation of 5%, while schedule delays followed a log-normal 

distribution derived from empirical construction data. Monte Carlo methods were used to introduce 

stochastic variability in project delays, labor shortages, and weather disruptions, ensuring the dataset 

adequately captured uncertainty and real-world dynamics [37]. 
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The dataset consisted of 12 input variables and 4 output variables. The input variables included 

numerical features such as estimated cost, actual cost, planned duration, actual duration, equipment 

efficiency, risk score, quality score, and safety incidents, along with categorical variables such as project 

complexity (low, medium, high), weather conditions (favorable, neutral, unfavorable), labor availability 

(low, medium, high), and material availability (low, medium, high). The output variables represented 

key performance outcomes: cost overrun (binary classification), schedule adherence (binary 

classification), quality rating (categorical classification), and safety risk (binary classification). The 

incorporation of both numerical and categorical data types required appropriate preprocessing steps to 

ensure compatibility with machine learning models. 

3.3 Data Preprocessing 

Before training the machine learning models, rigorous data preprocessing was performed to 

ensure data consistency and model efficiency. Missing values were handled using mean imputation for 

continuous variables such as cost and schedule, while mode imputation was applied to categorical 

variables such as weather conditions. Normalization of numerical attributes was achieved through Min-

Max scaling, transforming values into a range between 0 and 1 to enhance model convergence, 

particularly for the neural network. Categorical variables were encoded using one-hot encoding to avoid 

unintended ordinal relationships in model processing [24, 25, 39]. To optimize model training, the 

dataset was partitioned into training and testing subsets using a 70-30% split. Furthermore, five-fold 

cross-validation was employed during training to assess the models' performance across multiple 

subsets, thereby mitigating the risk of overfitting and improving generalization [40]. 

3.4 Model Selection 

Two machine learning models were selected for this study due to their robustness in handling 

high-dimensional datasets and capturing non-linear relationships in construction project data. Random 

Forest, an ensemble learning method, was chosen for its ability to aggregate predictions from multiple 

decision trees, thereby enhancing accuracy and reducing variance. In this study, the Random Forest 

model was configured with 100 decision trees, a maximum tree depth ranging between 10 and 30 

(optimized through hyperparameter tuning), and a minimum sample size per split of five. The Gini 

impurity criterion was used for feature selection, ensuring the most informative variables were 

prioritized in model learning [38]. 

Neural Networks were also employed due to their strong pattern recognition capabilities. A 

feed-forward neural network with three hidden layers was designed to capture complex interactions 

between project attributes. The architecture consisted of 128 neurons in the first hidden layer, 64 

neurons in the second layer, and 32 neurons in the final hidden layer. ReLU (Rectified Linear Unit) was 

used as the activation function in hidden layers to enable non-linearity, while a sigmoid activation 

function was applied in the output layer for binary classification tasks. The network was trained using 

the Adam optimizer with an adaptive learning rate, and binary cross-entropy loss was used for 

classification tasks, while Mean Squared Error (MSE) was used for continuous predictions such as cost 

adherence [40]. 

In addition to these machine learning models, CPM and EVM were used as baseline models 

for comparison. CPM was applied for schedule forecasting, while EVM was used for cost estimation, 

enabling an empirical evaluation of the predictive improvements introduced by machine learning 

techniques [37]. 

3.5 Model Training and Hyperparameter Optimization 

The machine learning models were trained using the training subset, with hyperparameter 

optimization performed to maximize predictive performance. Grid search was employed to optimize 

the hyperparameters of the Random Forest model, fine-tuning the number of trees, tree depth, and 
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minimum sample size per split. The neural network model underwent iterative training, with dropout 

regularization applied to prevent overfitting. The learning rate was dynamically adjusted using an 

adaptive learning scheduler to ensure convergence without excessive fluctuations [28, 40]. 

Cross-validation was implemented to evaluate model stability, with five-fold validation 

ensuring performance consistency across different subsets of the training data. This validation approach 

minimized the likelihood of overfitting and provided a more reliable estimate of model performance on 

unseen data [24]. 

3.6 Model Evaluation and Performance Metrics 

In order to assess the predictive performance of the models, multiple evaluation metrics were 

employed. Root Mean Squared Error (RMSE) was used (Equation 1) to measure the accuracy of cost 

and schedule predictions, capturing the deviations between actual and predicted values. Classification 

performance was assessed using accuracy, precision, recall, and the F1-score, particularly for 

identifying high-risk projects. Precision quantified the proportion of correctly identified high-risk 

projects, recall measured the model’s ability to detect all true high-risk cases, and the F1-score provided 

a balanced measure of precision and recall [25]. 

RMSE = √((1/n) * Σ (yᵢ - ŷᵢ)²)   (1) 

 

for i = 1 to n 

 Where: 

RMSE = Root Mean Squared Error 

n = Total number of data points 

yᵢ = Actual value for the i-th data point 

ŷᵢ = Predicted value for the i-th data point 

Σ = Summation over all data points (i = 1 to n) 

3.7 Comparative Analysis of Machine Learning and Traditional Models 

The predictive performance of the machine learning models was compared against CPM and 

EVM using tables and graphical representations. Feature importance plots were generated for the 

Random Forest model to identify the most influential variables in predicting project outcomes, while 

confusion matrices were used to analyze the classification accuracy of the neural network model. 

Additionally, RMSE values for cost forecasts were summarized in a comparative table, and F1-scores 

for high-risk classification were visualized to highlight improvements over traditional methods [40]. 

3.8 Limitations and Future Research 

Although this study demonstrated the effectiveness of machine learning models in predicting 

project performance, certain limitations must be acknowledged. Since the dataset was synthetically 

generated, real-world complexities may not have been fully captured, potentially affecting the 

generalizability of the models. Future research should validate the findings using real-world datasets 

from construction firms and explore the applicability of alternative algorithms such as Gradient 

Boosting Machines (GBMs) and Support Vector Machines (SVMs) for improved predictive accuracy 

[27, 39]. 

4. Results and Discussion 

4.1 Model Performance on Predicting Cost Overruns 
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The accuracy of machine learning models—Random Forests and Neural Networks—in 

predicting cost overruns was evaluated alongside traditional methods, Critical Path Method (CPM) and 

Earned Value Management (EVM). The results, summarized in Table 1, show the Root Mean Squared 

Error (RMSE) for each model. 

Table 1: RMSE Values for Cost Overrun Prediction 

Model 
RMSE (Cost Overrun 

Prediction) 

Random Forest 5.23 

Neural Networks 6.12 

Critical Path Method (CPM) 10.45 

Earned Value Management 

(EVM) 
9.87 

The results demonstrate that Random Forests achieved the lowest RMSE of 5.23, significantly 

outperforming CPM (10.45) and EVM (9.87). Neural Networks followed closely with an RMSE of 

6.12, further confirming the advantage of machine learning models over traditional methods. The 

improved performance of Random Forests can be attributed to its ensemble learning capability, which 

allows it to capture complex interactions between key project factors such as labor shortages, material 

cost fluctuations, and environmental disruptions. By integrating multiple decision trees, Random 

Forests effectively model the intricate dependencies within project data, leading to higher predictive 

accuracy. This aligns with previous research emphasizing the strength of ensemble methods in 

construction forecasting [24]. 

Although Neural Networks also outperformed traditional models, their slightly higher RMSE 

suggests challenges associated with optimizing deep learning models. Neural Networks often require 

extensive hyperparameter tuning and large-scale datasets to generalize effectively. The use of a 

simulated dataset, despite its realistic attributes, may not fully capture the variability found in real-world 

construction projects, potentially limiting the model’s predictive capacity [38]. To provide a clearer 

comparison of model performance, Figure 1 visually represents the RMSE values for both cost and 

schedule predictions across all models. 

 

Figure 1: Comparison of RMSE for Cost and Schedule Predictions 
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4.2 Schedule Adherence Predictions 

Accurately predicting schedule adherence is essential for preventing costly delays and resource 

misallocations. The RMSE and classification accuracy for each model in predicting project schedules 

and identifying high-risk projects are presented in Table 2. 

Table 2: Model Performance for Schedule Adherence Prediction 

Model RMSE (Schedule Prediction) Accuracy (High-Risk Projects) 

Random Forest 4.87 89.20% 

Neural Networks 5.35 86.70% 

Critical Path Method 

(CPM) 
9.75 70.50% 

Earned Value 

Management (EVM) 
8.95 72.30% 

Random Forests once again demonstrated the highest predictive accuracy, achieving an RMSE 

of 4.87 and an 89.2% accuracy in classifying high-risk projects. Neural Networks performed well but 

exhibited a slightly higher RMSE (5.35) and classification accuracy of 86.7%. Both models 

substantially outperformed traditional approaches, which had significantly higher RMSE values (CPM: 

9.75, EVM: 8.95) and lower classification accuracy. 

The superior performance of machine learning models can be attributed to their ability to 

capture non-linear relationships between schedule-related factors. Construction projects are inherently 

dynamic, influenced by variables such as workforce availability, supply chain disruptions, and 

unexpected weather changes. Traditional methods like CPM and EVM rely on static baseline estimates 

and predefined paths, limiting their adaptability to real-time project variations. In contrast, machine 

learning models leverage historical patterns and probabilistic relationships to generate flexible and data-

driven predictions, making them more suited for modern construction environments [28, 37]. 

4.3 Quality Prediction and Safety Incidents 

The models were also evaluated for their ability to predict quality outcomes and detect projects 

at risk of experiencing safety incidents. Table 3 provides the RMSE for quality predictions and precision 

and recall for predicting safety incidents. 

Table 3: Quality Prediction and Safety Incident Detection 

Model 
RMSE (Quality 

Prediction) 

Precision (Safety 

Incidents) 
Recall (Safety Incidents) 

Random Forest 3.45 85.50% 83.70% 

Neural Networks 4.05 82.10% 80.90% 

Critical Path Method 

(CPM) 
7.92 65.20% 64.30% 

Earned Value 

Management (EVM) 
7.57 67.10% 65.40% 

Random Forests recorded the lowest RMSE for quality predictions (3.45) and demonstrated the 

highest precision (85.5%) and recall (83.7%) for safety risk classification. Neural Networks followed 
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closely with an RMSE of 4.05 and precision/recall values of 82.1% and 80.9%, respectively. Both 

machine learning models significantly outperformed CPM and EVM, which exhibited much higher 

RMSE values and lower classification performance. To illustrate this performance difference, Figure 2 

presents a comparative visualization of precision and recall values across all models. 

 

Figure 2: Comparison of Precision and Recall for Safety Risk Classification 

The ability of machine learning models to detect safety risks and predict quality performance 

is particularly valuable in complex construction environments. Safety incidents often result from an 

interplay of factors such as worker fatigue, site conditions, and compliance failures, which are difficult 

to model using traditional linear approaches. Machine learning techniques, particularly Random 

Forests, excel at recognizing these intricate dependencies, allowing for proactive risk mitigation 

strategies [38]. 

4.4 Discussion 

The findings of this study unequivocally demonstrate the superiority of machine learning 

models, particularly Random Forests, over traditional methods in predicting key project performance 

metrics. The results validate prior research highlighting the limitations of conventional project 

management techniques, which struggle to capture the multifaceted, non-linear relationships present in 

construction data. In contrast, machine learning models successfully leverage historical project 

attributes to make adaptive and data-driven predictions [40]. 

Among the models tested, Random Forests consistently delivered the highest accuracy across 

all performance metrics, reinforcing the effectiveness of ensemble learning methods in reducing 

variance and enhancing model robustness. Neural Networks, while effective, exhibited slightly lower 

performance, likely due to the complexity of deep learning optimization and the constraints of the 

simulated dataset [28, 37]. The performance of CPM and EVM underscores their limitations in modern 

construction forecasting. Their reliance on deterministic assumptions and static baselines limits their 

applicability in dynamic project environments, leading to reduced predictive accuracy. The high RMSE 

values observed for both traditional models further indicate their inability to account for real-time 

project uncertainties [38]. 

4.5 Practical Implications 

The results of this study have several significant implications for the construction industry. The 

adoption of machine learning models, particularly Random Forests, should be prioritized by 
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construction firms to enhance project risk assessment and decision-making processes. These models 

provide substantial improvements in predicting cost overruns, schedule delays, and safety risks, 

allowing for proactive management interventions [28]. To fully leverage these capabilities, project 

managers and construction professionals must receive adequate training in data science and machine 

learning techniques. Investing in digital tools and technology infrastructure will be crucial in integrating 

predictive analytics into project workflows [37]. 

Furthermore, machine learning models offer a transformative approach to risk management by 

providing real-time insights that facilitate early detection of potential hazards. The ability to predict 

safety incidents with high precision can significantly improve on-site safety measures, reducing 

workplace accidents and enhancing overall project success [24]. Future research should explore the 

application of advanced predictive models such as Gradient Boosting Machines (GBMs) and Support 

Vector Machines (SVMs) to further enhance forecasting accuracy and model interpretability [40]. 

5. Conclusion 

This study has demonstrated the significant advantages of advanced machine learning models, 

specifically Random Forests and Neural Networks, in predicting critical project performance outcomes 

in the construction industry. By comparing these models to traditional methods like the Critical Path 

Method (CPM) and Earned Value Management (EVM), the research highlights the superior accuracy 

and adaptability of machine learning models in forecasting cost overruns, schedule adherence, quality, 

and safety performance. 

The results indicate that Random Forests consistently delivered the most accurate predictions 

across all metrics, with the lowest RMSE values for cost and schedule predictions, and high precision 

and recall in predicting safety incidents and quality deviations. While Neural Networks also 

outperformed traditional methods, their performance was slightly lower due to the challenges of 

optimizing deep learning architectures with simulated data. In contrast, traditional methods like CPM 

and EVM were limited in their ability to handle the dynamic and multifactorial nature of modern 

construction projects, resulting in higher prediction errors and lower classification accuracy. These 

findings underscore the limitations of traditional project management tools, which are often unable to 

capture the complexities of real-world construction environments. The research suggests that machine 

learning models are not only more accurate but also more flexible in adapting to changes in project 

variables, such as labor availability, resource constraints, and environmental conditions. This flexibility 

allows for more reliable, real-time decision-making that can significantly improve project outcomes. 

The practical implications of this study are substantial. Construction firms should consider 

adopting machine learning models as part of their project management processes to enhance forecasting 

accuracy, reduce risk, and ensure more efficient resource allocation. The ability of these models to 

identify potential issues—such as cost overruns, delays, and safety risks—before they occur provides 

project managers with the proactive tools they need to mitigate risks and make informed decisions. 

Furthermore, this study highlights the importance of training and upskilling project managers in the use 

of machine learning tools. To fully harness the potential of these technologies, firms will need to invest 

in data infrastructure and training programs to ensure that project teams can effectively leverage 

machine learning models in their workflows. 

Overall, the adoption of machine learning models in construction project management 

represents a pivotal shift towards data-driven, predictive management. These tools offer a pathway to 

improved project performance, better risk management, and more efficient resource use. Moving 

forward, further research should explore the use of other advanced models, such as Gradient Boosting 

Machines (GBMs) and Support Vector Machines (SVMs), and evaluate their effectiveness using real-

world construction datasets. The future of construction project management will undoubtedly be shaped 

by advanced predictive analytics, empowering firms to meet the challenges of increasingly complex 

and fast-paced project environments. 
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Abbreviations 

AI   Artificial Intelligence 

CNN   Convolutional Neural Network 

CPM  Critical Path Method 

EVM  Earned Value Management 

GBM  Gradient Boosting Machine 

ML  Machine Learning 

RMSE  Root Mean Square Error 

RNN  Recurrent Neural Network 

SVM  Support Vector Machine 

XAI  Explainable Artificial Intelligence 
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