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Abstract 

The multiple oscillating layers of a double perturbed interface under self-gravitating has been  

investigated for all the perturbation modes. This type of research may be found to examine oscillating 

on multiple layers with self-gravitating force. The stability criterion is constructed analytically explained 

and confirmed these results with the numerical computations. The governing equations (equation of 

motion and equation of continuous) are obtained, providing that the boundary conditions are appropriate. 

the fundamental equations are resolved, non-singular solutions are found using the proper boundary 

circumstances, also, derived the total second order differential equation. The difference between these 

two states, stable and unstable, relies on the value of  densities.  In this point, the gravitational instability 

of the current model, which forms the basis of this work, will be decreased, The streaming is unstable.   

The gravitationally stable and unstable zones are discovered and graphically displayed. The triple fluid 

layers' weight force and densities ratios contribute significantly to the unstable nature of the current 

model.  
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1. Introduction 

 
    One of the first to demonstrate the self-gravitating instability of a static infinite homogeneous media was 

Jeans [1]. He discovered that the medium becomes unstable for all wavenumber perturbations below the 

critical point. 
c

G
k

2* =  . The modification in Jeans criterion was made by several investigators e.g. 

Chandrasekhar and Fermi [2],  Simon [3]. They include the effect of various parameters rotation, 

Chandrasekhar [4]. Also Elazab [5]and Radwan and Elazab [ 7 ] ,[8], Radwan , Elazab and Z.M. Ismail [10] , 

D. Pawlus[13], also [11],[14]. Build on our earlier research on the stability of two superposed layers.  A layer 

of uniformly density 2  gravitational fluid sandwiched between two self-gravitational fluid layers of varied 

density 31  and  .   The various strata are referred to as regions 1, 2, and 3 in figure (1).  The fluid of density

1  is in the region 1 with 0− z .The fluid of density 2  is in the region 2 with dz 0 , and the 

fluid of density 3  is in the region 3 with  zd . 

 
 

2. The Governing Equation 
 

The fluids are regarded as non-viscous and incompressible. These fluids are all affected by their own 

gravitational pull, weight force, and kinetic pressure. Use Cartesian coordinates (x,y,z), with the z=0 axis 

located along the interface between regions 1 and 2 fluid plane.  

 

 

 

 

 

 

 

              

              

              

              

              

              

              

              

              

  

             

             

      

      

 

 

 

 

The fundamental equations can be expressed as follows: 
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Fig.1 Sketch of Triple Superposed Fluids 
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 where, s stands for 1, 2 and 3 . Here   , u  and p are the fluid mass density, velocity vector and  kinetic pressure, 

V   is  the  gravitational  potential  and G is the gravitational constant. 
 

3. State of Equilibrium  

 

          In this situation, index 0 describes the physical quantities. The assumption make that the fluids flow quickly 

)cos,0,0(
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= .  Equations (1) through (3) contain the gravitodynamic equations for such  condition. 
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Each region solves equations (4) through (6), and the necessary boundary conditions are then applied at the 

interfaces of z=0 and z=d.  The non-singular formula for the kinetic pressures and self-gravitating potentials in the 

three regions are 
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Where 2c    is an  arbitrary constant  while 1c   is a parameter a length unit in this problem. 
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4. Perturbed State 

 The different physical quantities of the present model could be written as ( S=1, 2and 3)        for a slight divergence 

from the unperturbed condition.          
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 Here, a quantity with index 0 refers to the undisturbed condition, while a quantity with index 1 refers to a modest 

increment of this variable.  The amplitude of perturbation )(t , is given by 

 ),exp()( 0 tt  =                                 

where  )((0 t =   at   )0=t  is the initial amplitude of perturbation and    is the growth rate. By 

inserting the expansions(13),(14) and( 15 ) into equations (1),(2) and (3) yield 
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4.1.  Fourier Analysis 
 

     Based  on the linear perturbation technique which has been used for stability problems, the fluctuating 

parts sss
andpu 111

,   may be given as: 

 )(),,,( 11 zQtzyxQ ss =  ))(exp()( zkykxkit zyx ++                                             

where xk  , yk ,and zk   denote the wave numbers along the x, y, and z axes, respectively, and 1
sQ  (z) is a function 

that exclusively affects z.  Based on the space-time dependence (16) and (21), the linearized perturbation equations 

(17)--(20) are  solved and the finite solution of the velocities, pressures and gravitational potentials  in the 

perturbation state are given by :- 
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Here   
sF ,  

sL ,  
sH , 

sM  and ( s=1, 2 , 3 ) are  constants  of integration to be determined while k (=

222

zyx kkk ++ ) is the net wave number . 

 

 

4.2. Stability Criterion 
 

4.2.1.  Kinematic State 

 
    The velocity of the double perturbed interfaces at z =0 and z = d must be compatible with the normal 

components of the velocities 
s

u  (s=1, 2, and 3), which also need to be continuous. The skewed interfaces are 

provided by 
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     Consequently, we have 

 

(31) 

 

(32) 



 

47 
 

(37) 

 

(38) 

 

 

(39) 

 

(40) 

 

(41) 

 

 

 

 

 

                      

)exp()cos(

))exp()(exp(

)1)(exp()cos(

))exp()(exp(

)1)(exp()cos(

)cos(

23
3

2

2
2

2

2
2

21
1

kdtUik
k

L

kdkd

kdtUik

k
H

kdkd

kdtUik

k
L

tUik
k

L

z

z

z

z

+=

−−

−−+
=

−−

−+
=

+−=











 

 

 

4.2.2.   Self-gravitating condition 

 

     The self-gravitating potentials (
sss VtVV 10 )(+=  )and their derivatives must  be continuous across the 

interfaces ( 31) and (32)   at  the  initial positions z  =0 and z = d .These conditions yield   
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4.2.3.  pressure condition 

          At z  =0 and z =d, the pressure must be constant across the double perturbed interfaces (31) and (32).  

The following is a list of possible conditions.At z =0,  It  have from equation  (18) 
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At z = d ,  we have 
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By utilizing the conditions  (41)  and  (42)  and  matching  the  results  we finally obtain  the dispersion 

relation  
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where q =kd is dimensionless net wavenumber. 

 
5. General Discussions. 

 

       The  dispersion relation of  multiple oscillating layers of double perturbed interfaces with self-gravitate  is 

described by the relation (43).  It has the most informational instability in relation to the current issue.  Since the 

present relation is somewhat more general, some limiting cases reported or not yet recovered, it relates the growth 

rate   with the densities 21,  and 3  of the various fluids and of the fluid layers, the net wavenumber q , 

The necessary criterion could be obtained by applying the dispersion relation's (43) following simplifications.  

 

(i)      0,0,0 32 === U  

           Semi –infinite layer 

(ii)      0,0,02 === Ud  

            Two semi –infinite layers 

(iii)     0,0,0 13 == U  

           Unreal model 

(iv)      312 ,0,0,0  === dU  

             Gas layer  , say ,  immersed in an infinite medium 

 (v)       0,0,0,0,0 231 == dU  

                    Gas layer ,say, sandwiched between two different layers 

(vi)    The above cases (i)---(v),but with streaming fluid layers with       velocity 

                     )cos,0,0(0 tUu =  in the initial state 
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6. Numerical Discussion 
 

          Conducting the analytical discussion of relation (43) in order to distinguish between the stable and 

unstable domains and their characteristics is difficult.  It  is possible to construct the dispersion relation (43) to 

manage such discussions mathematically. In the dimensionless form illustrated below, the latter is expressed:  
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and  inserted  in  a  computer. The  numerical  analysis  of  the  relation (50) together with (51) have been 

carried out for the different values (a,b)=( 0, 0.1) , ( 0.1 , 0.2 ) , ( 0.2 , 0.3 ) , ( 2 , 0.4 ) , ( 6, 0.3 ) , (7 , 0.1 )for 

several values of the speed        

       
U* =0   ,  0.2 ,  0.7 ,   and  0.9   .The numerical data  are  collected and presented graphically   (see figs  .( 2 ) to 

(6 )). 

6.1.   Non streaming case 

             In  such  a  case  the  fluid  is considered to be stationary in   the initial state. The numerical data for 

different values of   
,,

2

3

2

1








== ba

   are given as follows . 

1 - For (a,b) )=( 0, 0.1) , ( 0.1 , 0.2 ) , ( 0.2 , 0.3 ) , ( 2 , 0.4 ) , ( 6, 0.3 ) , (7 , 0.1 ) 

And C*=1, corresponding to g*=0,U*=0. The unstable  domains have been discovered to be 0< q <1.0463, 0< q

<0.9465, 0< q <0.8466,0< q <1.1498, 0< q <1.8496, and 0< q <2.1496, 

while the stable domains are 1.0463< q < ,  0.9465< q < , 0.8466 < q < ,  1.1498< q < ,1.8496< q < ,and  

2.1496< q <  see fig (2). 
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Fig.2.  C*=1,  g*=0,U*=0, (a,b) )=( 0, 0.1) , ( 0.1 , 0.2 ) , ( 0.2 , 0.3 ) , ( 2 , 0.4 ) , ( 6, 0.3 ) , (7 , 0.1 )and 
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2- For (a,b) )=( 0, 0.1) , ( 0.1 , 0.2 ) , ( 0.2 , 0.3 ) , ( 2 , 0.4 ) , ( 6, 0.3 ) , (7 , 0.1 ) 

And C*=1, corresponding to g*=0.5.1,U*=0. The unstable  domains have been discovered to be 0< q <1.0462, 

0< q <9463, 0< q <0.8465, 0< q <1.1495, 0< q <0.2487,and 0< q < 0.5492  

while the stable domains are 1.0462< q < , 0.9463< q < , 0.8465< q < ,1.1495< q < ,0.2487< q

< ,and0.5492< q < .see fig (3)    
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Fig.3. C*=1, g*=0.5.1,U*=0, (a,b) )=( 0, 0.1) , ( 0.1 , 0.2 ) , ( 0.2 , 0.3 ) , ( 2 , 0.4 ) , ( 6, 0.3 ) , (7 , 0.1 )and 
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6.2.   Streaming case 

   1-  For (a,b) )=( 0, 0.1) , ( 0.1 , 0.2 ) , ( 0.2 , 0.3 ) , ( 2 , 0.4 ) , ( 6, 0.3 ) , (7 , 0.1 )    

 And C*=1, corresponding to g*=1,U*=0.2 .The unstable  domains have been discovered to be 0< q <1.2050, 0<

q <0.9469, 0< q <0.8471,and 0< q <1.1497  

while the stable domains1.2050< q < , 0.9469< q < , 0.8471< q < , 1.1497< < ,and stable along two 

value of a,b=( 6, 0.3 ) , (7 , 0.1 ) in   0< < .see fig (4). 
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Fig .4. C*=1, g*=1,U*=0.2, (a,b) )=( 0, 0.1) , ( 0.1 , 0.2 ) , ( 0.2 , 0.3 ) , ( 2 , 0.4 ) , ( 6, 0.3 ) , (7 , 0.1 ) and 
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2-For (a,b) )=( 0, 0.1) , ( 0.1 , 0.2 ) , ( 0.2 , 0.3 ) , ( 2 , 0.4 ) , ( 6, 0.3 ) , (7 , 0.1 )   

And C* =1, corresponding to g*=2,U*=0.7. The unstable  domains have been discovered to be 0< <1.0477, 

0< <0.9480, 0< q <1.0485, 0< < 1.1499 and stable along two value of a,b=( 6, 0.3 ) , (7 , 0.1 ) in    

0< q < .see fig (5). 
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q  

Fig.5. C* =1,  g*=2,U*=0.7, (a,b) )=( 0, 0.1) , ( 0.1 , 0.2 ) , ( 0.2 , 0.3 ) , ( 2 , 0.4 ) , ( 6, 0.3 ) , (7 , 0.1 ) and 

2

*

4 




G
=  

 

 

 

 

3-For (a,b) )=( 0, 0.1) , ( 0.1 , 0.2 ) , ( 0.2 , 0.3 ) , ( 2 , 0.4 ) , ( 6, 0.3 ) , (7 , 0.1 ) 

And C* =1, corresponding to g*=3, U*=0.9 . The unstable  domains have been discovered to be 0< q <1.0492, 

0< q < .9456  0< <0.8470 ,0< q <1.1499  

and stable along two value of a,b=( 6, 0.3 ) , (7 , 0.1 ) in    0< < .see fig (6). 
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Fig.6.C* =1,  g*=3, U*=0.9, (a,b) )=( 0, 0.1) , ( 0.1 , 0.2 ) , ( 0.2 , 0.3 ) , ( 2 , 0.4 ) , ( 6, 0.3 ) , (7 , 0.1 ) and  
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7. Conclusion 

    The numerical solution   which has been obtained by using MATLAB  may service as a tool  to compared with 

its analytical counterpart to reach the following in which it may give rise to be in favor of the reliability of the above 

mentioned analytical method.  

From this perspective,The  figured out  that the model completely stabilizes for both very long and short 

wavelengths with the same values of of a,b=( 6, 0.3 ) , (7 , 0.1 ) ,U*.=0.2,0.7,and 0.9 It is discovered that the unstable 

domains are growing with rising U values. For the same values of a,b , it is discovered that the model becomes 

entirely stable not only for short wavelengths but also for very long wavelengths, indicating that streaming has a 

destabilizing impact on the model for all short and long wavelengths. 
 

     In this study it can be discussed the oscillation effect which modified a lot of  the desstabilizing with self –

gravitrating force. This model's tendency toward instability is mostly determined by the weight force and densities 

ratios of the triple fluid layers with streaming velocity )cos,0,0(0 tUu
s

= of the triple fluids.    
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