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Abstract 

The Proportional-Integral-Derivative (PID) is by far the most common 

controller in process industries. In practice, a problem with PID controllers may 

arise when the controlled process variable (PV) saturates. At this point, the error, 

i.e., the difference between the set point (SP) and PV becomes constant, and so the 

derivative control action becomes zero or backs off. This leads to a sudden increase 

in the total controller output and as a result the process variable moves above its 

limit showing larger overshoot and settling time. To solve this problem, it is 

proposed to modify the PID controller action when the PV saturates. The 

modification is simply to multiply the derivative part by a suitable gain, transfer it 

to the integral part, and then the derivative part is set to zero. When the process 

output later becomes unsaturated, the derivative action is activated again. This 

technique is shown to reduce the overshoot, settling time, integral of absolute error 

(IAE), and works well in the presence of measurement noise. Although the optimal 

value of the gain depends on the size of disturbance which is not usually known, a 

fixed value of 2 is shown to be reasonable for most levels of disturbance. 
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1. Introduction 

Control systems play indispensable role in process industries ensuring product quality, 

safety of operators, equipment, environment protection, and maximizing profit. Over the years, 

diverse types of controllers ranging from the simple proportional-integral-derivative (PID) 

controller to the more sophisticated adaptive, robust, and optimal controls, are developed. 

Despite its simplicity, PID control is the most used controller in process industries [1, 2, 3] as 

it achieves acceptable performance while being well-understood by process operators. For 

this reason, enormous research efforts are devoted to improving PID controller parameter 

tuning [4, 5] as well as automatic tuning [6, 7]. In addition, the two-degrees of freedom 

configuration is proposed to achieve both good set point and load disturbance rejection [8]. 

Several variants of the controller are devised to deal with nonlinear processes such as adaptive 

[9], nonlinear [10], and fractional-order PID controllers [11, 12]. Other efforts are devoted to 

treat implementation issues such as anti-windup mechanisms [13].  

One of the main issues with PID controllers is the well-known integral windup 

problem that arises when the control signal hits a limit while the error is not zero. The 

consequence is that the integral part continues to grow above the value required at steady state 

leading to large overshoot and settling time in the process variable (PV). Among many 

techniques to solve this issue, conditional integration can be used, in which the integral action 

is stopped once the control signal saturates [13]. 

Recently, Theorin and Hagglund [14] pointed to another saturation problem 

associated with PID controllers, called derivative backoff. This problem occurs when a 

process variable itself saturates or hits one of its two limits (0% or 100%). This can occur, for 

example, when the set point is close to the limit and a sufficiently large disturbance occurs 

causing the process variable to overshoot above its upper limit (100%) or below its lower limit 

value (0%). At this instant, both the measured process variable and error are constant and so 

the derivative action becomes zero or backs off. This in turn results in a sudden increase in 

the control signal which drives the process variable away from set point leading to large 

overshoot and more time to return to the set point. The same problem can also appear in, e.g., 

active disturbance rejection controller (ADRC) [15]. To treat this problem, Theorin and 

Hagglund [14] proposed the following solution: when the process variable hits its limit, 

transfer, bumplessly, the derivative part value to the integral part and then set the derivative 

part to zero. When the process output later becomes unsaturated, the derivative action is 

activated again. This solution succeeded in reducing overshoot and settling time and works 

well in the presence of measurement noise.  

In this paper, an enhanced variant of the approach by Theorin and Hagglund [14] is 

proposed. The idea is to multiply the derivative action by a certain gain, α > 1, before 

transferring it to the integral part. This is shown to achieve less overshoot, settling time, and 

integral of absolute error (IAE). To choose the gain α, an experiment is conducted to optimize 

the IAE for different levels of disturbance. Although, the value of optimal gain depends on 

how large the disturbance is, a constant gain of 2 is found to suitable for most levels of 

disturbances. 
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The rest of the paper is organized as follows. First, in Section 2, the derivative backoff 

problem is described. Next, an improved solution to the problem is proposed in Section 3, 

along with several experiments to test and evaluate the performance of the method. In Section 

4, the optimal selection of the gain α is discussed. The robustness of the proposed method is 

tested through another experiment in Section 5. Finally, some conclusions are drawn in 

Section 6. 

2. The derivative backoff problem 

Consider the feedback control loop in Fig. 1, which contains a saturation element in 

the feedback path. The signals 𝑟, 𝑦, 𝑦𝑚, 𝑑, and 𝑢 denote the set point, process variable to be 

controlled, measured process variable, load disturbance, and the control signal, respectively. 

The measured process variable 𝑦𝑚  is related to the actual process variable 𝑦 through the 

saturation element as follows: 

  𝑦𝑚 = {

𝑦𝑚𝑖𝑛 ,                   𝑖𝑓 𝑦 ≤ 𝑦𝑚𝑖𝑛

𝑦 ,          𝑖𝑓 𝑦𝑚𝑖𝑛 ≤ 𝑦 ≤ 𝑦𝑚𝑎𝑥

𝑦𝑚𝑎𝑥 ,                  𝑖𝑓 𝑦 ≥ 𝑦𝑚𝑎𝑥

                 (1) 

where 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 denote the maximum and minimum values for the process 

variable, respectively. The PID controller operates on the error, 𝑒 = 𝑟 − 𝑦𝑚 , where the 

control signal, 𝑢, is calculated as a weighted combination of the error, its integral, and its 

derivative according to the following formula: 

𝑢(𝑡) = 𝐾 (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0

),                              (2) 

where the parameters 𝐾, 𝑇𝑖 , and 𝑇𝑑  are the controller gain, integral time, and 

derivative time, respectively. In practice, the derivative term is filtered using a first order filter: 

𝐺𝑓(𝑠) =
𝑇𝑑𝑠

𝑇𝑑
𝑁

𝑠 + 1
,                                                  (3) 

where the derivative gain 𝑁 is usually set to 10. 

 
Fig. 1. The feedback control loop with saturation element in the feedback path.  
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To illustrate the derivative backoff problem, Theorin and Hagglund [14] considered 

the following process, 

                   𝑃(𝑠) =
1

(𝑠+1)4 ,                                                              (4) 

This process is controlled using a PID controller tuned using the M-constrained 

Integral Gain Optimization (MIGO) method with M, the maximum sensitivity function, set to 

1.4 [2]. The plant given by Eq. (4) is representative of self-regulating processes commonly 

found in process industries. The process is discretized, using a zero-order hold (ZOH), with a 

sample time of 0.04 s. The controller parameters are K = 1.19, 𝑇𝑖 = 2.22, and 𝑇𝑑 = 1.21. The 

purpose of these settings is to show that the derivative backoff problem could exist even if the 

PID controller is well tuned [14]. Furthermore, for this setup to reflect practical situations, it 

is imperative to investigate the effect of measurement noise. For this purpose, a Gaussian 

random noise of variance 0.01 is added to the measured process variable through the set up 

shown in Fig. 2, where the noise can cause false saturation of the process variable while being 

close to its upper or lower limit [14].  

 
Fig. 2. Channel noise setup.  

 
In the simulations to follow, the set point is 90%, i.e., very close to the limits of the 

process variable to put more focus on the problem. A step load disturbance of 40% is 

introduced at the process input. The response of the process variable as well as the control 

signal are shown in Fig. 3 with ordinary PID without any specific action taken against the 

derivative backoff. It is clear from Fig. 3 that the derivative backoff problem is profound; the 

actual process variable is driven away from set point and takes longer time to return back to 

the set point. To deal with this problem, Theorin and Hagglund [14] suggested an anti-backoff 

method, in which once the process variable hits a limit, the value of the derivative term moves 

to the integral part and then the derivative term is set to zero. This can be expressed as 

𝑖𝑓 𝑦𝑚 = 𝑦𝑚𝑎𝑥 𝑜𝑟 𝑦𝑚𝑖𝑛: 
       𝐼 = 𝐼 + 𝐷,                  (5) 

𝐷 = 0,   

    

where I and D denote the integral and derivative controller actions, respectively. The 

response obtained using this method is also shown in Fig. 3 where it is clear that both 

overshoot and settling time are reduced thanks to the reduction of control signal (Fig. 3, 

bottom) when the process variable starts to saturate. Based on this idea, an improved variant 

of this scheme is proposed in the next section. 
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Fig. 3. The process variable (top) and control signal (bottom) of ordinary PID (without any 

action taken against derivative-backoff problem), Theorin’s, and the proposed methods.  

3. The proposed modification 

In this section, a minor modification of the anti-backoff scheme given by Eq. (5) is 

proposed as follows: 

𝑖𝑓 𝑦𝑚 = 𝑦𝑚𝑎𝑥 𝑜𝑟 𝑦𝑚𝑖𝑛: 
       𝐼 = 𝐼 + 𝛼𝐷,                    (6) 

𝐷 = 0,    

    

The rationale behind this modification is that, for severe situations where the process 

variable is pushed further away from set point, there is a need to amplify or multiply the 

derivative part by a gain α > 1 before moving it to the integral part and then setting it to zero. 

The response of the process given by Eq. (4) using the PID controller employing the 

proposed anti-derivative backoff scheme given by Eq. (6), with α = 2, is shown in Fig. 3. As 

can be seen, the proposed method reduces both the overshoot and settling time compared to 

ordinary PID and Theorin and Hagglund’s method [14]. This is because the amplification of 

the derivative action results in larger braking effect in the control signal as seen in Fig. 3 

(bottom). This improvement in response, however, comes at the expense that the transfer of 

the control signal at beginning of the process variable saturation, at around time instant of 3 

seconds, is not bumpless.  
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Ordinary PID, Theorin and Hagglund method [14], and the proposed scheme given 

by Eq. (6) can be also compared in terms of the integral of absolute error (IAE) criterion 

defined as 

      𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡.
∞

0
    (7)   

One 100 Monte Carlo simulations are conducted and the average IAE are recorded in 

Table 1 for disturbance, d, ranging from 30% to 80%. The proposed scheme outperforms the 

other two methods achieving the least IAE criterion for disturbances above 40%. 

In addition, the proportional, integral, and derivative parts of the control signal for 

the three methods are shown in Fig. 4. From the Fig. 4 (middle), a larger drop in the integral 

action is obtained using the proposed modification compared to Theorin and Hagglund 

method’s [14]. This acts as a braking effect reducing the overshoot in process variable. As 

expected, the proportional and derivative actions in Fig. 4 (top and bottom, respectively) are 

constant during the interval in which the process variable is above 100%. 

 

 
Fig. 4. The proportional (top), integral (middle), and derivative (bottom) control actions of 

the three methods: Ordinary PID (with no action taken against derivative backoff), 

Theorin’s and the proposed methods. 

 
Table 1. IAE for different values of disturbance d using ordinary PID, Theorin’s method, 

and proposed method (with fixed α = 2) for the process given by Eq. (4). 

   d (%)    

Method 30 40 50 60 70 80 
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Ordinary 79.7 134.8 207.9 299.0 409.2 535.5 

Theorin [14] 66.2 95.7 134.5 200.0 257.3 329.3 

Proposed 73.3 88.2 105.7 145.0 163.9 205.1 

4. Selection of the gain 𝜶 

To determine the optimal value of  α, the system given by the transfer function given 

by Eq. (4) is simulated with zero measurement noise. The IAE value is plotted against α for 

several values of load disturbance as shown in Fig. 5 where it is clear that the optimal α 

depends on the amplitude of the disturbance. For example, for a disturbance d = 30%, the 

optimal α = 1.5, while for a disturbance d = 80%, α = 3.0, and so on. Note that for d = 20%, 

the amount of disturbance is not enough to cause the process variable to saturate and hence, 

the backoff problem does not occur in this case. In general, there is a need for larger α when 

the size of disturbance is large. Of course, disturbance size would be unknown in practice and 

there is a need for a reasonable choice for α that works for most situations. 

From Fig. 5, the optimal value of α ranges approximately from 1.25 to 3.5 for the 

given set of disturbance. Based on this observation, it is suggested to use fixed α = 2 regardless 

of the amount of disturbance. This choice is already confirmed in Table 1, where the proposed 

method, with α = 2, achieved the best IAE for disturbance d ≥  40%. Only for small 

disturbances, e.g., d = 30%, the method of Theorin and Hagglund [14], which corresponds to 

α = 1, outperforms the proposed method. 

 

 
Fig. 5. The IAE vs. α for different values of step load disturbances ranging from 20% to 

80%. 

 

5. Robustness of the proposed method 
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The empirically suggested value for the gain α = 2 is obtained for the process  given 

by (4). To investigate the robustness of this method, the same PID tuning are used while the 

true process is modified to  

𝑃(𝑠) =
1

(𝑠 + 1)5
.                                                     (8) 

The same experiments are repeated, and the results are given in Table 2. Again, the 

proposed method outperforms Theorin and Hagglund’s method [14] for all values of 

disturbances except for low disturbance of 30% as previously obtained for the process given 

by Eq. (4). This shows that the proposed method is robust against model plant mismatch, i.e., 

when the process model given by Eq. (4) used for controller tuning is different from the actual 

plant transfer function given by Eq. (8).  

 
Table 2. IAE for different values of disturbance d using ordinary PID, Theorin’s method, 

and proposed method (with fixed α = 2) for the process given by Eq. (8). 

   d (%)    

Method 30 40 50 60 70 80 

Ordinary 114.3 176.7 254.5 348.8 463.5 592.4 

Theorin [14] 109.8 145.4 193.1 263.7 348.7 590.1 

Proposed 113.4 136.7 171.0 205.4 283.4 587.9 

6. Conclusions 

In this paper, the derivative backoff saturation problem of PID controllers is 

considered. Although, less attention has been given to this problem, its consequences are 

similar to the well-known windup problem: large overshoot and settling time in process 

variable. To solve this problem, a simple method is proposed which significantly reduces 

overshoot, settling time, and integral of absolute error, and furthermore, is robust against 

model-plant mismatch. The method involves a gain parameter, α, whose choice depends on 

the amount of disturbance affecting the plant. A fixed value α = 2.0 is shown to be reasonable 

for most sizes of disturbance for the plant under study. 

One issue with the proposed anti-backoff method is that it relies on the presence of 

integral control action [14]. It interesting to investigate the problem for controllers without 

integral action. 
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