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Abstract 

The General theory of relativity is one of the most successful theories of 

gravity. Despite its successful applications, it has some difficulties in examining 

the behaviour of particles precisely in strong gravitational fields. Bi-metric type 

theories of gravity are classified as  alternative theories of gravity that describing 

such  strong gravitational fields, such as the gravitational field formed at the core 

of our galaxy. In order to obtain the equations of motion for spinning fluids, we 

use the Weyssenhoff tensor to express the spin fluid. The equations of motion for 

spinning fluids are derived using Euler-Lagrange equation. We present the 

equations of motion for spinning fluids and their corresponding spin deviation 

equations in some classes of Bi-metric type theories. Also, we obtain equations 

of motion for spinning fluids and their corresponding spin deviation for a 

variable mass. Moreover, we extend our study to examine the status of motion 

for spinning charged fluids and their corresponding spin deviation equations. 
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Charged spinning fluid.   

https://doi.org/10.21608/msaeng.2023.291864


 

2              MSA ENGINEERING JOURNAL 

Volume 2 Issue 2, E-ISSN 2812-4928, P-ISSN 28125339 (https://msaeng.journals.ekb.eg//) 

1. Introduction 

Einstein’s theory of gravitation (GR), has, so far, been considered to be one of the 

great achievements of the last century [1]. This is because of its confirmation with respect to 

a degree of accuracy to all gravitational observations and experiments, detected during that 

epoch [2]. In addition to its predictions [3], this revealed new phenomena that were detected 

recently in the current century, such as gravitational waves [4]. This theory has been 

established in the context of pseudo-Riemannian geometry depending on two principles: the 

general covariance and the equivalence principles. At the end of the 20th century, standard 

cosmology had problems due to its inability to examine the behaviour of particles in strong 

gravitational fields. 

On one hand this prompted some authors to construct alternative theories of gravity 

to conceive and interpret tests of gravity [5, 6]. There are numerous attempts to formulate 

other theories of gravity, in this article, we devoted on one of these. One of the streams that 

took constructive theory of gravity alternative to GR was started by Fierz and Pauli 1939 [7]. 

This stream is known in the literature as Bi-metric type theories of gravity (for a review see 

[8]). These theories of gravity are considered promising theories to interpreting phenomena 

in strong field.  

The importance of the bi-metric type theories of gravity stems from its ability to 

examine the behavior of particles in strong gravitational fields. Additionally, bi-metric type 

theories are considered as gauge field theories. It has numerous versions. A Class of these 

theories respects Lorentz invariance. While some of its versions break Lorentz invariant. 

Lorentz-breaking theories for massive gravity has the same progress as that of Lorentz-

invariant theories, based on the experience summarized from recent developments in such 

theories. In what follows, we are going to display briefly some approaches of this type of 

theories: 

(a)The Rosen Approach 

In 1940, Rosen [9] proposed bi-metric theory of gravitation is, satisfying the 

covariance and equivalence principles. In his approach, he introduced a second metric tensor 

𝛾𝜖𝜎 corresponding to flat space, besides the metric tensor 𝑔𝜖𝜎. The theory's fundamental 

concept is that any point on the manifold is represented by two reference frames, the first of 

which is expressed in a flat space and the second of which is curved. 

(b)The Moffat Approach 

In this approach, Moffat [10] has merged the above two metrics, producing a new 

one defined as: 

                                                  𝑔𝜖𝜎 ≝ 𝑔𝜖𝜎 + 𝐵𝜕𝜖𝜑𝜕𝜎𝜑,                                           (1)   
where, 𝐵 𝑎𝑛𝑑 𝜑 represents a bi-scalar field. This version of bi-metric theory breaks the 

Lorentz invariance in the very early universe, supposing that the speed of light undergoes a 

first or second order phase transition in this epoch. This modification has interpreted the 

problem of dark energy [11], due to his proposal that speed of light is not constant in space-

time or what is called a variable of the speed of light (VSL). 

(c) The Milgrom Approach 
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According to this version it is proposed to involve two metrics as independent 

degrees of freedom [12], the MOND metric 𝑔𝜖𝜎which is responsible for the ordinary matter 

and an auxiliary metric 𝛾𝜖𝜎 proposed to express twin matter. 

The basic idea depends on the fact that we may create tensors from the difference 

between the Levi-Civita connections of the two metrics having the following form 

                                                𝐶  𝜇𝜈
𝛼 ≝ Γ  𝜇𝜈

𝛼 − Γ̅  𝜇𝜈
𝛼 .                                                      (2)     

The above third order tensor act like gravitational accelerations of the two sectors. 

The importance of BIMOND is that its ability to interpret phenomena subject to 

strong gravitational fields as the core of black holes [13] and describing the behaviour of 

galactic dark matter and dark energy. Also, it plays the role of measuring the gravitational 

lensing in an accurate way. 

(d) The Hassan - Rosen Approach 

Hossenfelder has formulated another version for bi-metric theories by proposing 

two different metrics one is defined on the tangent space 𝑇𝑀 while the other is in its 

cotangent space 𝑇∗𝑀 on a manifold  𝑀 [13, 14]. Each metric has its own Levi-Cevita 

connection and curvature tensor. Then, two different fields are taken into account, each of 

which moves in accordance with a certain metric and its connection. 

(e) The Verozub Approach 

The bi-metric theory of gravity [15] has been extended to an alternate version by 

Verozub by the addition of geodesic mappings. This made it possible to describe gravity in 

two different geometries, one of them Riemannian space as a co-moving reference frame, 

and the other a Minkowski space, an inertial reference frame. Consequently, a point mass 

moving in a co-moving reference frame  (Riemannian space) may observed to moving along 

a geodesic line, but in reality it is actually moving under a force field as viewed from an 

inertial reference frame. 

In this modification, the geodesic mapping acts as gauge transformations [16]. Such 

a tendency makes it possible to examine the behaviour of trajectories in very strong 

gravitational fields such as Sgr A* [17]. As a result, this kind of description can tackle 

problems with strong gravity and stability problems surrounding supermassive black holes. 

On the other hand, the arising notion of examining intrinsic property of matter that 

becomes essential in the presence of strong fields of gravity in their studies [18].  One of 

such staggering features is the problem of the intrinsic spin which plays a dominant role in 

the early stages of the universe, excluding the possibility of a cosmic singularity [19, 20].  

Also, some authors have focused on studying the spinning motion because it is 

considered to be one of the true elements of the characteristic behaviour of objects in nature. 

Therefore, various attempts had been done in the domain of the theory of general relativity, 

beginning with Mathisson [21], and continuing with Papapetrou [22]. Mathisson- 

Papapetrou provides the following equations for the dynamics of spinning particles  

                                                   
D𝑃𝛼

D𝜏
=

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜌𝜎𝑈𝜇 ,                                           (3) 
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D𝑆𝛼𝛽

D𝜏
= 𝑃𝛼𝑈𝛽 − 𝑃𝛽𝑈𝛼,                                           (4) 

while,  𝑃𝛼 = 𝑚𝑈𝛼 + 𝑈𝛽
D𝑆𝛼𝛽

D𝜏
  defines the momentum of the particle, 𝑆𝛼𝛽is the spin density 

tensor, and 𝑈𝜇denotes the 4-velocity of the particle. Moreover, such a type of an approach 

has been expanding to study spinning charged objects by Dixon [23] by means to include 

other non-gravitational forces such as electromagnetic. Accordingly, Equations (3) and (4) 

may be extended to include magnetic moments as known as the Dixon-Souriau equations in 

the following way has developed a method to incorporate spinning motion and (cf. [24]) 

                        
D𝑃𝛼

D𝜏
=

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜌𝜎𝑈𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖 +

1

2
𝑔𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎;𝜇 ,                     (5) 

                          
D𝑆𝛼𝛽

D𝜏
= 𝑃𝛼𝑈𝛽 − 𝑃𝛽𝑈𝛼 − (𝑀𝛼𝜌𝐹𝜌 

 𝛽
+ 𝑀𝛽𝜌𝐹 𝜌

  𝛼),                        (6) 

                                                                    
Dq

D𝜏
= 0.                                                          (7) 

where, 𝑀𝜖𝜎gives electromagnetic moment and q denotes the electric charge of the particle. 

The problem of motion of spinning particles has been tackled in other non-Riemannian 

geometries such as Absolute Parallelism and Finslerian geometries [25, 26]. These works 

have been extended to examine the problem of spinning fluids in the context of Riemannian 

geometry [27]. 

In the present work, our main aim is to study equations of motion for spinning fluid 

in the context of some versions of Bi-metric theories of gravity. Accordingly, the article is 

arranged as follows. In Section 2 we introduce the Weyssenhoff spin tensor needed for the 

current application.  Equations of motion for spinning fluids and their corresponding spin 

deviation are obtained in Section 3. In Sect. 4, we derive equations of motion for spinning 

fluids and their corresponding spin deviation for a variable mass. In Sect. 5, we investigate 

equations of motion for spinning charged fluids and their corresponding spin deviation. In 

Sect.6 we give some comments about the obtained equations and their forthcoming 

applications.  

2. Weyssenhoff Spin Fluid  

Through the article, we are going to derive the equations of motion for spinning 

fluid using the Weyssenhoff spin tensor.  

On microscopic scales, the spin of the matter fields acts as a characteristic of the 

continuous Weyssenhoff fluid, since the Weyssenhoff fluid is a perfect fluid that has 

intrinsic spin. For which the spin (angular momentum) density of the matter fields can be 

described by the second-order skew tensor 

                                                       𝑆𝛼𝛽 = −𝑆𝛽𝛼.                                                              (8)    
It is a good candidate to describe particles having pole-dipole moments. To describe the 

motion of a spinning fluid the second-order tensor 𝑆𝛼𝛽 must be extended to another one that 

can describe multi-pole moments for extended objects. Accordingly, we use the 

Weyssenhoff tensor for spinning fluid which is postulated to be (cf. [28]) 

                                                              𝑆𝜎𝛼𝛽 = 𝑆𝛼𝛽𝑈𝜎,                                                     (9)      
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where, 𝑆𝜎𝛼𝛽 is a third-order skew-tensor in the last two indices which is chosen to represent 

the spin density of the fluid, 𝑈𝜎 =
𝑑𝑥𝜎

𝑑𝜏
  is the unit tangent vector and 𝜏 is a parameter 

varying along the curve. In the case of the spinning fluid motion having a precession the 

Weyssenhoff tensor can be written as 

                                                      𝑆𝜎𝛼𝛽 = 𝑆𝛼𝛽𝑃𝜎 ,                                                       (10) 

where, 𝑃𝜎is the momentum of the particle and is defined as: 

                                                        𝑃𝜎 ≝ 𝑚𝑈𝜎 + 𝑈𝜖

D𝑆𝜖𝜎

D𝜏
.                                                 (11)         

While for variable mass, the Weyssenhoff tensor is expressed as 

                                                     �̌�𝜎𝛼𝛽 = 𝑚(𝜏)𝑆𝛼𝛽𝑈𝜎 ,                                                  (12)  
where, 𝑚(𝜏) is a function of the parameter 𝜏  representing variable mass. 

3. Equations of Motion for Spinning Fluids and its Corresponding Spin 

Deviation 
In this section, we will derive the equations of motion for spinning fluids and their 

corresponding spin deviation in the bi-metric type theories. However, it is worth to mention 

that the equation of spinning motion for spinning particle for these versions of Bi-metric 

type theories have been obtained in [29]. 

3.1.  Rosen Approach 

Equations of motion in the context of Rosen's approach in the case of 𝑃𝜖 = 𝑚𝑈𝜖can 

be derived using the following Lagrangian function [29] 

               𝐿 = (𝑔𝜖𝜎 − 𝛾𝜖𝜎)𝑈𝜖
∇𝛹𝜎

∇𝜏
+ 𝑆𝜖𝜎  

∇𝛹𝜖𝜎

∇𝜏
+

1

2
𝑅𝜇𝜈𝜖𝜎 𝑆𝜖𝜎𝑈𝜈𝛹𝜇.                (13) 

where, 𝑔𝜖𝜎 and  𝛾𝜖𝜎 are the metric tensors of the curved space and the flat space respectively, 

and 𝑅𝜇𝜈𝜖𝜎  is the curvature tensor formed from the metric tensor 𝑔𝜖𝜎. While, 𝛾𝜖𝜎 having a 

vanishing curvature tensor. And  
∇

∇𝜏
, is an operator that characterizes covariant derivative, 

such that for an arbitrary vector 𝐴𝛼 the covariant derivative is defined as: 

                                                   
∇𝐴𝛼

∇𝜏
=  

d𝐴𝛼

d𝜏
+ ∆  𝜇𝜈

𝛼  𝐴𝜇𝑈𝜈,                                         (14) 

as,  ∆  𝜇𝜈
𝛼 ≝ Γ  𝜇𝜈

𝛼 − Γ  𝜇𝜈
𝛼  where Γ  𝜇𝜈

𝛼  and Γ  𝜇𝜈
𝛼  are the affine connection of the curved and flat 

space, respectively. To obtain the path equations one have to apply the following Euler-

Lagrange equation with respect to deviation vector 𝛹𝛼and to the spin deviation tensor 𝛹𝛼𝛽 

which have the forms: 

                                                         
𝑑

𝑑𝑆

𝜕𝐿

𝜕�̇�𝛼
−

𝜕𝐿

𝜕𝛹𝛼
= 0,                                              (15) 

and, 

                                                             
𝑑

𝑑𝑆

𝜕𝐿

𝜕�̇�𝛼𝛽
−

𝜕𝐿

𝜕𝛹𝛼𝛽
= 0.                                      (16) 

One gets, 

                                                                
∇𝑈𝛼

∇𝜏
=

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜌𝜎𝑈𝜇,                                   (17) 

and, 
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∇𝑆𝛼𝛽

∇𝜏
= 0.                                                        (18) 

Consequently, using the Weyssenhoff tensor (9), the equation of spinning motion 

for the spinning fluid will have the form  

                                                  
∇𝑆𝛼𝛽𝛾

∇𝜏
=

1

2
𝑅  𝜇𝜖𝜎

𝛼 𝑆𝜖𝜎 𝑆𝛽𝛾𝑈𝜇 .                                       (19) 

To obtain the equation of spinning density deviation, one has to apply the condition [30] 

                                                         𝑆         ;𝛿
𝛼𝛽𝛾

Ψ𝛿 = Ψ         ;𝛿
𝛼𝛽𝛾

U𝛿 ,                                        (20) 

which implies using the following commutation relation 

                   (𝑆         ;𝛿𝜌
𝛼𝛽𝛾

− 𝑆         ;𝜌𝛿
𝛼𝛽𝛾

) Ψ𝛿U𝜌 = 𝑆𝜖[𝛽𝛾𝑅   𝜖𝛿𝜌
𝛼]

 𝑈𝛿 𝛹𝜌.               (21)    

Accordingly; we can obtain the equation of spinning density deviation to have the form:  

∇2𝛹𝛼𝛽𝛾

∇𝜏2
= 𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
 𝑈𝜖  𝛹𝜎 +

1

2
[(𝑅   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎  𝑆𝛽𝛾)
;𝛿

 

                                    +(𝑅   𝜇𝜖𝜎
𝛼  𝑈𝜇 𝑆𝜖𝜎 𝑆𝛽𝛾)

|𝛿
] 𝛹𝛿 ,                                               (22) 

where, the semicolon (;) and stroke (|) are used as infix operators characterize tensor 

derivatives using connections of curved and flat spaces, respectively. 

 While in the case of motion with precession, i.e. 𝑃𝜖 = 𝑚𝑈𝜖 + 𝑈𝜎
∇𝑆𝜖𝜎

∇𝜏
, the 

Lagrangian of spinning motion written as 

  𝐿 = (𝑔𝜖𝜎 − 𝛾𝜖𝜎)𝑃𝜖
∇𝛹𝜎

∇𝜏
+ 𝑆𝜖𝜎  

∇𝛹𝜖𝜎

∇𝜏
+

1

2
𝑅𝜇𝜈𝜖𝜎 𝑆𝜖𝜎𝑈𝜇𝛹𝜈 + 2𝑃[𝜖𝑈𝜎]Ψ

𝜖𝜎. (23) 

By applying the variation to the Lagrangian (23) with respect to 𝛹𝜎 and 𝛹𝜖𝜎, one obtains  

                                                 
∇𝑃𝛼

∇𝜏
=

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜌𝜎𝑈𝜇 ,                                                 (24) 

and, 

                                                        
∇𝑆𝛼𝛽

∇𝜏
= 2𝑃[𝛼𝑈𝛽].                                                    (25) 

Using equations (24) and (25), then the equation of spinning motion can be written as 

                                    
∇𝑆𝛼𝛽𝛾

∇𝜏
= 2𝑃𝛼𝑃[𝛽𝑈𝛾] +

1

2
𝑅  𝜇𝜖𝜎

𝛼 𝑆𝜖𝜎 𝑆𝛽𝛾𝑈𝜇 .                         (26) 

Applying (21) and the condition (20), then the equation of spinning density deviation 

becomes  

   
∇2𝛹𝛼𝛽𝛾

∇𝜏2
= 𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
 𝑈𝜖  𝛹𝜎 + 2 [(𝑃𝛼𝑃[𝛽𝑈𝛾])

;𝛿
+ (𝑃𝛼𝑃[𝛽𝑈𝛾])

|𝛿
] 𝛹𝛿                

  

            +
1

2
[(𝑅   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎 𝑆𝛽𝛾)
;𝛿

+ (𝑅   𝜇𝜖𝜎
𝛼  𝑈𝜇 𝑆𝜖𝜎 𝑆𝛽𝛾)

|𝛿
] 𝛹𝛿                (27) 

3.2. Moffat's Approach 

The Lagrangian representing spinning motion according to Moffat’s approach in 

case of 𝑃𝜖 = 𝑚𝑈𝜖, have the form: 
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                        𝐿 = 𝑔𝜖𝜎𝑈𝜖
∇̂𝛹𝜎

∇̂𝜏
+ 𝑆𝜖𝜎  

∇̂𝛹𝜖𝜎

∇̂𝜏
+

1

2
�̂�𝜇𝜈𝜖𝜎 𝑆𝜖𝜎𝑈𝜈𝛹𝜇 .                       (28) 

where, 

�̂�  𝜇𝜈𝜎
𝛼 ≝ Γ̂   𝜇𝜎,𝜈

𝛼 − Γ̂   𝜇𝜈,𝜎
𝛼 + Γ̂   𝜇𝜎

𝜖 Γ̂   𝜖𝜈
𝛼 − Γ̂   𝜇𝜈

𝜖 Γ̂   𝜖𝜎
𝛼 , 

defines the curvature tensor, and the operator 
∇̂

∇̂𝜏
 defines the covariant derivative w.r.to the 

parameter 𝜏 such that for any arbitrary vector 𝐴𝛼, we have 

∇̂𝐴𝛼

∇̂𝜏
=  

d𝐴𝛼

d𝜏
+ Γ̂  𝜇𝜈

𝛼  𝐴𝜇𝑈𝜈, 

By operating the Euler-Largrange equations (15) and (16) to (28), one obtains 

                                                              
∇̂𝑈𝛼

∇̂𝜏
=

1

2
�̂�  𝜇𝜌𝜎

𝛼  𝑆𝜌𝜎𝑈𝜇.                                   (29) 

and 

                                                                         
∇̂𝑆𝛼𝛽

∇̂𝜏
= 0.                                               (30) 

Meanwhile, from Weyssenhoff tensor (9), the equation of motion for spinning fluid can be 

written as  

                                                  
∇̂𝑆𝛼𝛽𝛾

∇̂𝜏
=

1

2
�̂�  𝜇𝜖𝜎

𝛼 𝑆𝜖𝜎 𝑆𝛽𝛾𝑈𝜇 .                                       (31) 

In the context of Moffat's approach the condition (20), can be rewritten as: 

                                                        𝑆         ||𝛿
𝛼𝛽𝛾

Ψ𝛿 = Ψ         ||𝛿
𝛼𝛽𝛾

U𝛿 ,                                        (32) 

and the commutation relation will have the form 

                             (𝑆         ||𝛿𝜌
𝛼𝛽𝛾

− 𝑆         ||𝜌𝛿
𝛼𝛽𝛾

) Ψ𝛿U𝜌 = 𝑆𝜖[𝛽𝛾�̂�   𝜖𝛿𝜌
𝛼]

 𝑈𝛿 𝛹𝜌.             (33)   

Accordingly, by using the relation (33) and the condition (32), we can obtain the equation of 

spin density deviation as  

            
∇̂2𝛹𝛼𝛽𝛾

∇̂𝜏2
= 𝑆𝜌[𝛽𝛾�̂�   𝜌𝜖𝜎

𝛼]
 𝑈𝜖  𝛹𝜎 +

1

2
(�̂�   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎 𝑆𝛽𝛾)
||𝛿

𝛹𝛿 .        (34) 

where, the double-stroke (||) is an infix operator used to characterize tensor derivatives using 

connection Γ̂  𝜇𝜈
𝛼 . 

While in case of 𝑃𝜖 = 𝑚𝑈𝜖 + 𝑈𝜎
∇̂𝑆𝜖𝜎

∇̂𝜏
, the Lagrangian of spinning can be written as 

      𝐿 = 𝑔𝜖𝜎𝑃𝜖
∇̂𝛹𝜎

∇̂𝜏
+ 𝑆𝜖𝜎  

∇̂𝛹𝜖𝜎

∇̂𝜏
+

1

2
�̂�𝜇𝜈𝜖𝜎  𝑆𝜖𝜎𝑈𝜈𝛹𝜇 + 2𝑃[𝜖𝑈𝜎]Ψ

𝜖𝜎.               (35) 

By operating the variation for the Lagrangian (35) with respect to 𝛹𝛼 and 𝛹𝛼𝛽, one gets 
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∇̂𝑃𝛼

∇̂𝜏
=

1

2
�̂�   𝜇𝜖𝜎

𝛼  𝑆𝜖𝜎𝑈𝜇 ,                                               (36) 

and 

                                                                
∇̂𝑆𝛼𝛽

∇̂𝜏
= 2𝑃[𝛼𝑈𝛽].                                            (37) 

Following the same technique mentioned above we can derive the equation of motion and 

the spin density deviation equation as follow 

                                   
∇̂𝑆𝛼𝛽𝛾

∇̂𝜏
= 2𝑃𝛼𝑃[𝛽𝑈𝛾] +

1

2
�̂�  𝜇𝜖𝜎

𝛼 𝑆𝜖𝜎  𝑆𝛽𝛾𝑈𝜇,                           (38) 

and 

∇̂2𝛹𝛼𝛽𝛾

∇̂𝜏2
= 𝑆𝜌[𝛽𝛾�̂�   𝜌𝜖𝜎

𝛼]
 𝑈𝜖 𝛹𝜎 + (2𝑃𝛼𝑃[𝛽𝑈𝛾] +

1

2
�̂�   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎  𝑆𝛽𝛾)
||𝛿

𝛹𝛿 . (39) 

3.3. BIMOND Type Theories  

The Lagrangian function for spinning motion in case of  𝑃𝜖 = 𝑚𝑈𝜖  in the context 

of BIMOND type theories, can be written as 

                𝐿 = �̅�𝜖𝜎𝑈𝜖
∇̅𝛹𝜎

∇̅𝜏
+ 𝑆𝜖𝜎  

∇̅𝛹𝜖𝜎

∇̅𝜏
+

1

2
(𝑅𝜇𝜈𝜖𝜎 − �̅�𝜇𝜈𝜖𝜎) 𝑆𝜖𝜎𝑈𝜈𝛹𝜇 ,           (40) 

where,  

�̅�  𝜇𝜈𝜎
𝛼 ≝ Γ   𝜇𝜎,𝜈

𝛼
− Γ   𝜇𝜈,𝜎

𝛼
+ Γ   𝜇𝜎

𝜖
Γ   𝜖𝜈

𝛼
− Γ   𝜇𝜈

𝜖
Γ   𝜖𝜎

𝛼
. 

By taking the variation with respect to 𝛹𝛼 and 𝛹𝛼𝛽, to the Lagrangian (40), then one can 

obtain the path equations as:  

                                         
∇̅𝑈𝛼

∇̅𝜏
=

1

2
(𝑅  𝜇𝜌𝜎

𝛼 − �̅�  𝜇𝜌𝜎
𝛼 ) 𝑆𝜌𝜎𝑈𝜇 .                                    (41) 

and 

                                                                    
∇̅𝑆𝛼𝛽

∇̅𝜏
= 0.                                                     (42) 

Accordingly, we can obtain the equation of motion for spinning fluid using the Weyssenhoff 

tensor (9) in the form: 

                                    
∇̅𝑆𝛼𝛽𝛾

∇̅𝜏
=

1

2
(𝑅  𝜇𝜖𝜎

𝛼 − �̅�  𝜇𝜖𝜎
𝛼 )𝑆𝜖𝜎 𝑆𝛽𝛾𝑈𝜇 .                               (43) 

Using the condition (20), and  
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                                                   𝑆
         |+

𝛿
𝛼𝛽𝛾

Ψ𝛿 = Ψ
         |+

𝛿
𝛼𝛽𝛾

U𝛿 ,                                              (44) 

together with the commutation relation (21) and the following one 

                      (𝑆
         |++

𝛿𝜌
𝛼𝛽𝛾

− 𝑆
         |++

𝜌𝛿
𝛼𝛽𝛾

) Ψ𝛿U𝜌 = 𝑆𝜖[𝛽𝛾�̅�   𝜖𝛿𝜌
𝛼]

 𝑈𝛿 𝛹𝜌.           (45)   

We can derive the spin density deviation tensor to become  

∇̅2𝛹𝛼𝛽𝛾

∇̅𝜏2
= (𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
− 𝑆𝜌[𝛽𝛾�̅�   𝜌𝜖𝜎

𝛼]
) 𝑈𝜖  𝛹𝜎 +

1

2
(𝑅   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎  𝑆𝛽𝛾)
;𝛿

𝛹𝛿 

               +
1

2
(�̅�   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎  𝑆𝛽𝛾)
|+
𝛿 𝛹𝛿 .                                                             (46) 

While, the double-stroke (|) together with the (+) sign are infix operators used to represent 

tensor derivatives using connectionΓ̅  𝜇𝜈
𝛼 . 

But, in case of motion with precession, i.e.�̅�𝜖 = 𝑚𝑈𝜖 + 𝑈𝜎
∇̅𝑆𝜖𝜎

∇̅𝜏
, the Lagrangian will 

have the form: 

𝐿 = �̅�𝜖𝜎𝑈𝜖
∇̅𝛹𝜎

∇̅𝜏
+ 𝑆𝜖𝜎  

∇̅𝛹𝜖𝜎

∇̅𝜏
+

1

2
(𝑅𝜇𝜈𝜖𝜎 − �̅�𝜇𝜈𝜖𝜎) 𝑆𝜖𝜎𝑈𝜈𝛹𝜇 + 2�̅�[𝜖𝑈𝜎]Ψ

𝜖𝜎 . (47) 

Taking variation to (47) with respect to 𝛹𝛼 and 𝛹𝛼𝛽, the path equations can be written as:   

                                                  
∇̅𝑃𝛼

∇̅𝜏
=

1

2
(𝑅  𝜇𝜖𝜎

𝛼 − �̅�  𝜇𝜖𝜎
𝛼 ) 𝑆𝜖𝜎𝑈𝜇 .                              (48) 

and, 

                                                                
∇̅𝑆𝛼𝛽

∇̅𝜏
= 2𝑃[𝛼𝑈𝛽].                                             (49) 

Using the Weyssenhoff tensor (10), then we obtain the equation of motion for spinning fluid 

as follow:  

                
∇̅𝑆𝛼𝛽𝛾

∇̅𝜏
= 2𝑃𝛼𝑃[𝛽𝑈𝛾] +

1

2
(𝑅  𝜇𝜖𝜎

𝛼 − �̅�  𝜇𝜖𝜎
𝛼 ) 𝑆𝜖𝜎 𝑆𝛽𝛾𝑈𝜇 .                         (50) 

Using relations (21) and (45) together with conditions (20) and (44), we can obtain the 

equation of spin density deviation as  

∇̅2𝛹𝛼𝛽𝛾

∇̅𝜏2
= (𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
− 𝑆𝜌[𝛽𝛾�̅�   𝜌𝜖𝜎

𝛼]
) 𝑈𝜖  𝛹𝜎 + 2 [(�̅�𝛼�̅�[𝛽𝑈𝛾])

;𝛿
+ (�̅�𝛼�̅�[𝛽𝑈𝛾])

|+
𝛿 ] 𝛹𝛿 

 +
1

2
[(𝑅   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎  𝑆𝛽𝛾)
;𝛿

+ (�̅�   𝜇𝜖𝜎
𝛼  𝑈𝜇 𝑆𝜖𝜎 𝑆𝛽𝛾)

|+
𝛿 ] 𝛹𝛿 .                         (51) 

 

3.4.   Hassan-Rosen Approach: Bi-gravity type theories 

According to this version, the two suggested metrics 𝑔𝜖𝜎and ℎ𝜖𝜎 are chosen to 

define two distinct field equations one describe the matter while the second for the twin 

matter.  
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The corresponding Lagrangian of spinning motion in case of 𝑃𝜖 = 𝑚𝑈𝜖 and  �̃�𝜖 = �̃�𝑈𝜖 

can be expressed as: 

𝐿 = 𝑔𝜖𝜎𝑈𝜖Ψ   ;𝛼
𝜎 𝑈𝛼 + ℎ𝜖𝜎𝑉𝜖Φ   ;𝛼

𝜎 𝑉𝛼 + 𝑆𝜖𝜎  Ψ     ;𝛼
𝜖𝜎 𝑈𝛼 + �̃�𝜖𝜎 Φ     ;𝛼

𝜖𝜎 𝑉𝛼 

                +
1

2
𝑅𝜇𝜈𝜖𝜎𝑆𝜖𝜎𝑈𝜈𝛹𝜇 +

1

2
�̃�𝜇𝜈𝜖𝜎�̃�𝜖𝜎𝑉𝜈Φ𝜇 .                                               (52) 

Where𝑉𝛼, Φ𝜎and �̃�𝜖𝜎 characterizing the twin unit tangent vector, the twin deviation vector 

and the twin spinning tensor, respectively. And �̃�𝜇𝜈𝜖𝜎 defines the curvature tensor formed 

by the metricℎ𝜖𝜎. 

Accordingly, the path equations can be obtained by applying variation with respect to the 

deviation vector Φ𝛼  𝑎𝑛𝑑  Ψ𝛼, to the Lagrangian (52), one gets: 

                                                     
D𝑈𝛼

D𝜏
=

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜌𝜎𝑈𝜇 .                                            (53) 

                                                       
D𝑉𝛼

D𝜆
=

1

2
�̃�  𝜇𝜌𝜎

𝛼  �̃�𝜌𝜎𝑉𝜇 .                                           (54) 

While the variation with respect to the deviation tensor Φ𝛼𝛽& Ψ𝛼𝛽, gives rise to the 

following equations 

                                                                 
D𝑆𝛼𝛽

D𝜏
= 0.                                                     (55) 

And, 

                                                               
D�̃�𝛼𝛽

D𝜆
= 0.                                                        (56) 

From the Weyssenhoff tensor, by using equations (53-56) then we can obtain the equations 

of motion for spinning fluid, to become  

                                              
D𝑆𝛼𝛽𝛾

D𝜏
=

1

2
𝑅  𝜇𝜖𝜎

𝛼 𝑆𝜖𝜎  𝑆𝛽𝛾𝑈𝜇.                                       (57) 

                                                   
D�̃�𝛼𝛽𝛾

D𝜆
=

1

2
�̃�  𝜇𝜖𝜎

𝛼 �̃�𝜖𝜎  �̃�𝛽𝛾𝑉𝜇 .                                   (58) 

Consequently, by using the relation (21) and the condition (20), we can obtain the equation 

of spin density deviation as  

D2𝛹𝛼𝛽𝛾

D𝜏2
= 𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
 𝑈𝜖 𝛹𝜎 +

1

2
(𝑅   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎 𝑆𝛽𝛾)
;𝛿

𝛹𝛿 

Using the condition  

                                                        𝑆         |||𝛿
𝛼𝛽𝛾

Φ𝛿 = Φ         |||𝛿
𝛼𝛽𝛾

U𝛿 ,                                         (59) 

and following commutation relation  

                       (𝑆         |||𝛿𝜌
𝛼𝛽𝛾

− 𝑆         |||ρ𝛿
𝛼𝛽𝛾

) Φ𝛿U𝜌 = 𝑆𝜖[𝛽𝛾�̃�   𝜖𝛿𝜌
𝛼]

 𝑈𝛿 Φ𝜌,              (60)   

we can obtain the spin density deviation tensor to become  
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D2Φ𝛼𝛽𝛾

D𝜆2
= �̃�𝜌[𝛽𝛾�̃�   𝜌𝜖𝜎

𝛼]
 𝑉𝜖  Φ𝜎 +

1

2
(�̃�   𝜇𝜖𝜎

𝛼  𝑉𝜇 �̃�𝜖𝜎 �̃�𝛽𝛾)
|||𝛿

Φ𝛿 .           (61) 

In case of    𝑃𝜖 = 𝑚𝑈𝜖 + 𝑈𝜎
D𝑆𝜖𝜎

D𝜏
 and �̃�𝜖 = �̃�𝑉𝜖 + 𝑉𝜎

D�̃�𝜖𝜎

D𝜆
, the Lagrangian function can 

be written as 

𝐿 = 𝑔𝜖𝜎𝑈𝜖Ψ   ;𝛼
𝜎 𝑈𝛼 + ℎ𝜖𝜎𝑉𝜖Φ  |||𝛼

𝜎 𝑉𝛼 + 𝑆𝜖𝜎 Ψ     ;𝛼
𝜖𝜎 𝑈𝛼 + �̃�𝜖𝜎 Φ    |||𝛼

𝜖𝜎 𝑉𝛼 + 2𝑃[𝜖𝑈𝜎]Ψ
𝜖𝜎 

+
1

2
𝑅𝜇𝜈𝜖𝜎𝑆𝜖𝜎𝑈𝜈𝛹𝜇 +

1

2
�̃�𝜇𝜈𝜖𝜎�̃�𝜖𝜎𝑉𝜈Φ𝜇 + 2�̃�[𝜖𝑉𝜎]Φ

𝜖𝜎 .                                       (62) 

By operating the variation to the Lagrangian (62) with respect to Φ𝛼 , Ψ𝛼 ,Φ𝛼𝛽and Ψ𝛼𝛽, one 

can obtain the following set of equation 

                                                  
D𝑃𝛼

D𝜏
=

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜌𝜎𝑈𝜇 .                                               

                                                  
D�̃�𝛼

D𝜆
=

1

2
�̃�  𝜇𝜌𝜎

𝛼  �̃�𝜌𝜎𝑉𝜇 .                                                (63)  

                                                            
D𝑆𝛼𝛽

D𝜏
= 2𝑃[𝛼𝑈𝛽].                                                        

                                                            
D�̃�𝛼𝛽

D𝜆
= 2�̃�[𝛼𝑉𝛽].                                                        

We obtain the equation of spinning motion for spinning motion, to have the form  

                                    
D𝑆𝛼𝛽𝛾

D𝜏
= 2𝑃𝛼𝑃[𝛽𝑈𝛾] +

1

2
 𝑅  𝜇𝜖𝜎

𝛼  𝑆𝜖𝜎 𝑆𝛽𝛾𝑈𝜇 .                       (64) 

                                    
D�̃�𝛼𝛽𝛾

D𝜆
= 2�̃�𝛼�̃�[𝛽𝑉𝛾] +

1

2
 �̃�  𝜇𝜖𝜎

𝛼  �̃�𝜖𝜎  �̃�𝛽𝛾𝑉𝜇 .                      (65) 

Following the same technique mentioned in the previous section to derive the equation of 

spin density deviation, we get 

D2𝛹𝛼𝛽𝛾

D𝜏2
= 𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
𝑈𝜖 𝛹𝜎 + (2𝑃𝛼𝑃[𝛽𝑈𝛾] +

1

2
𝑅   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎 𝑆𝛽𝛾)
;𝛿

𝛹𝛿 , (66) 

D2Φ𝛼𝛽𝛾

D𝜆2
= 𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
𝑈𝜖  Φ𝜎 + (2�̃�𝛼�̃�[𝛽𝑉𝛾] +

1

2
�̃�   𝜇𝜖𝜎

𝛼  𝑉𝜇 �̃�𝜖𝜎  �̃�𝛽𝛾)
|||𝛿

Φ𝛿 . (67) 

3.5.   The Verozub Approach:  Bi-metric invariant-gravitation theory  

In case of 𝑃𝜖 = 𝑚𝑈𝜖, the Lagrangian of spinning motion will have the following 

form:   
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                   𝐿 = Υ𝜖𝜎(𝜓)𝑈𝜖
D𝛹𝜎

D𝜏
+ 𝑆𝜖𝜎  

D𝛹𝜖𝜎

D𝜏
+

1

2
𝐾𝜇𝜈𝜖𝜎 𝑆𝜖𝜎𝑈𝜈𝛹𝜇 .                    (68) 

where, Υ𝜖𝜎(𝜓) is the combined metric under the effect of a given field 𝜓, and its 

corresponding curvature is defined as  

𝐾  𝜇𝜈𝜎
𝛼 ≝ Γ̿   𝜇𝜎,𝜈

𝛼 − Γ̿   𝜇𝜈,𝜎
𝛼 + Γ̿   𝜇𝜎

𝜖 Γ̿   𝜖𝜈
𝛼 − Γ̿   𝜇𝜈

𝜖 Γ̿   𝜖𝜎
𝛼 . 

Similarly, the path equations can be obtained by operating the variation with respect to 𝛹𝛼 

and 𝛹𝛼𝛽, to the Lagrangian (71) as follow:   

                                                    
D𝑈𝛼

D𝜏
=

1

2
𝐾𝜇𝜈𝜖𝜎 𝑆𝜌𝜎𝑈𝜇 ,                                            (69) 

and, 

                                                              
D𝑆𝛼𝛽

D𝜏
= 0.                                                         (70) 

Accordingly, by using the equations (69) and (70) and Weyssenhoff tensor (9), we get: 

                                             
 D𝑆𝛼𝛽𝛾

D𝜏
=

1

2
𝐾  𝜇𝜖𝜎

𝛼 𝑆𝜖𝜎  𝑆𝛽𝛾𝑈𝜇 .                                       (71) 

From the condition (20), which can be rewritten as  

                                                    𝑆
         ||+

𝛿
𝛼𝛽𝛾

Ψ𝛿 = Ψ
         ||+

𝛿
𝛼𝛽𝛾

U𝛿 ,                                          (72) 

together with the following relation  

                                  (𝑆
         ||++

𝛿𝜌
𝛼𝛽𝛾

− 𝑆
         ||++

𝜌𝛿
𝛼𝛽𝛾

) Ψ𝛿U𝜌 = 𝑆𝜖[𝛽𝛾𝐾   𝜖𝛿𝜌
𝛼]

 𝑈𝛿  𝛹𝜌.            (73) 

We get,  

          
D2𝛹𝛼𝛽𝛾

D𝜏2
= 𝑆𝜌[𝛽𝛾𝐾   𝜌𝜖𝜎

𝛼]
 𝑈𝜖 𝛹𝜎 +

1

2
(𝐾   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎 𝑆𝛽𝛾)
||+

𝛿 𝛹𝛿 .        (74) 

Moreover, the Lagrangian of spinning motion in case of  �̌�𝜖 = 𝑚𝑈𝜖 + 𝑈𝜎
∇̅𝑆𝜖𝜎

∇̅𝜏
 can be expressed 

as: 

      𝐿 = Υ𝜖𝜎(𝜓)𝑈𝜖
D𝛹𝜎

D𝜏
+ 𝑆𝜖𝜎  

D𝛹𝜖𝜎

D𝜏
+

1

2
𝐾𝜇𝜈𝜖𝜎 𝑆𝜖𝜎𝑈𝜈𝛹𝜇 + 2�̌�[𝜖𝑈𝜎]Ψ

𝜖𝜎.     (75) 
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Accordingly, by taking the variation with respect to 𝛹𝛼 and 𝛹𝛼𝛽, one obtains 

                                                     
D�̌�𝛼

D𝜏
=

1

2
𝐾  𝜇𝜖𝜎

𝛼  𝑆𝜖𝜎𝑈𝜇,                                          (76) 

and, 

                                                   
D𝑆𝛼𝛽

D𝜏
= 2�̌�[𝛼𝑈𝛽].                                               (77) 

Following the same methods mentioned above we can derive the equation of motion and the 

spin density deviation equation as follow 

                               
D𝑆𝛼𝛽𝛾

D𝜏
= 2�̌�𝛼�̌�[𝛽𝑈𝛾] +

1

2
𝐾  𝜇𝜖𝜎

𝛼  𝑆𝜖𝜎 𝑆𝛽𝛾𝑈𝜇 .                           (78) 

D2𝛹𝛼𝛽𝛾

D𝜏2
= 𝑆𝜌[𝛽𝛾𝐾   𝜌𝜖𝜎

𝛼]
𝑈𝜖 𝛹𝜎 + [2�̌�𝛼�̌�[𝛽𝑈𝛾] +

1

2
𝐾   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎 𝑆𝛽𝛾]
||+

𝛿
𝛹𝛿 . (79) 

4. Equations of Motion for Spinning Fluids and its corresponding spin deviation: 

Variable Mass 

In this section, we are going to derive spinning and spinning deviation equation in 

case of motion without precession recalling that in case of 𝑃𝜖 ≠ 𝑚𝑈𝜖 implies that mass is 

constant [31]. 

4.1. Rosen's Approach 

We suggest the Lagrangian in the context of Rosen's approach in case of variable 

mass having the following form: 

𝐿 = 𝑚(𝜏)(𝑔𝜖𝜎 − 𝛾𝜖𝜎)𝑈𝜖
∇𝛹𝜎

∇𝜏
+ 𝑆𝜖𝜎  

∇𝛹𝜖𝜎

∇𝜏
+ (𝑚(𝜏),𝜇 +

1

2
𝑅𝜇𝜈𝜖𝜎  𝑆𝜐𝜖𝜎) 𝛹𝜇 . (80) 

By varying the above Lagrangian with respect to 𝛹𝛼 and 𝛹𝛼𝛽, we get the following path 

equation 

                      
∇𝑈𝛼

∇𝜏
=

𝑚(𝜏),𝜎

𝑚(𝜏)
((g𝛼𝜎 − γ𝛼𝜎) − 𝑈𝛼𝑈𝜎) +

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜇𝜌𝜎,             (81) 

 and, 

                                                                 
∇𝑆𝛼𝛽

∇𝜏
= 0.                                                     (82) 
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Using equations (81) and (82), therefore, the equation of spinning motion will take 

the form 

             
∇𝑆𝛼𝛽𝛾

∇𝜏
= (

𝑚(𝜏),𝜎

𝑚(𝜏)
((g𝛼𝜎 − γ𝛼𝜎) − 𝑈𝛼𝑈𝜎) +

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜇𝜌𝜎) 𝑆𝛽𝛾 .      (83) 

Therefore, we can get the equation of spin density deviation by applying the relation 

(21)   together with the condition (20) 

∇2𝛹𝛼𝛽𝛾

∇𝜏2
= 𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
 𝑈𝜖  𝛹𝜎 + ((

𝑚(𝜏),𝜎

𝑚(𝜏)
((g𝛼𝜎 − γ𝛼𝜎) − 𝑈𝛼𝑈𝜎) +

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜇𝜌𝜎) 𝑆𝛽𝛾)

;𝛿

𝛹𝛿 

  + ((
𝑚(𝜏),𝜎

𝑚(𝜏)
((g𝛼𝜎 − γ𝛼𝜎) − 𝑈𝛼𝑈𝜎) +

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜇𝜌𝜎) 𝑆𝛽𝛾)

|𝛿

𝛹𝛿         (84) 

4.2. Moffat’s Approach 

The Lagrangian of a spinning motion in case of variable mass, has been suggested 

to take the form 

         𝐿 = 𝑚(𝜏)𝑔𝜖𝜎𝑈𝜖
∇̂𝛹𝜎

∇̂𝜏
+ 𝑆𝜖𝜎  

∇̂𝛹𝜖𝜎

∇̂𝜏
+ (𝑚(𝜏),𝜇 +

1

2
 �̂�𝜎𝜈𝛼𝛽 𝑆𝜈𝛼𝛽) 𝛹𝜇 .   (85) 

By varying the above Lagrangian with respect to 𝛹𝛼 and 𝛹𝛼𝛽, we get 

                               
∇̂𝑈𝛼

∇̂𝜏
=

𝑚(𝜏),𝜎

𝑚(𝜏)
(𝑔𝛼𝜎 − 𝑈𝛼𝑈𝜎) +

1

2
�̂�  𝜇𝜌𝜎

𝛼  𝑆𝜇𝜌𝜎  .                     (86)  

and, 

                                                             
∇̂𝑆𝛼𝛽

∇̂𝜏
= 0.                                                           (87) 

Using the Weyssenhoff tensor (12), then the equation of motion for spinning fluid can be 

obtained to have the form: 

                        
∇̂𝑆𝛼𝛽𝛾

∇̂𝜏
= (

𝑚(𝜏),𝜎

𝑚(𝜏)
(𝑔𝛼𝜎 − 𝑈𝛼𝑈𝜎) +

1

2
�̂�  𝜇𝜌𝜎

𝛼  𝑆𝜇𝜌𝜎) 𝑆𝛽𝛾 .                (88) 

Applying (45) and the condition (44) accordingly, we can get the equation of 

spinning density deviation to become 

∇̂2𝛹𝛼𝛽𝛾

∇̂𝜏2
= 𝑆𝜌[𝛽𝛾�̂�   𝜌𝜖𝜎

𝛼]
 𝑈𝜖 𝛹𝜎 + ((

𝑚(𝜏),𝜎

𝑚(𝜏)
(𝑔𝛼𝜎 − 𝑈𝛼𝑈𝜎) +

1

2
�̂�  𝜇𝜌𝜎

𝛼  𝑆𝜇𝜌𝜎) 𝑆𝛽𝛾)

||𝛿

𝛹𝛿 . (89) 
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4.3. BIMOND Type Theories 

We suggest the following Lagrangian to drive equation of motion for spinning fluid in 

case of variable mass to be written as 

𝐿 = 𝑚(𝜏)�̅�𝜖𝜎𝑈𝜖
∇̅𝛹𝜎

∇̅𝜏
+ 𝑆𝜖𝜎  

∇̅𝛹𝜖𝜎

∇̅𝜏
+ [𝑚(𝜏),𝜇 +

1

2
(𝑅𝜇𝜈𝜖𝜎 − �̅�𝜇𝜈𝜖𝜎)𝑆𝜈𝜖𝜎] 𝛹𝜇 . (90) 

The path equations can be obtained by applying variation with respect 

toΨ𝛼  𝑎𝑛𝑑  Ψ𝛼𝛽, to (90), as follow: 

           
∇̅𝑈𝛼

∇̅𝜏
=

𝑚(𝜏),𝜖

𝑚(𝜏)
(�̅�𝛼𝜖 − 𝑈𝛼𝑈𝜖) +

1

2
(𝑅  𝜇𝜌𝜎

𝛼 − �̅�  𝜇𝜌𝜎
𝛼 ) 𝑆𝜇𝜌𝜎 ,                    (91) 

and, 

                                                                    
∇̅𝑆𝛼𝛽

∇̅𝜏
= 0.                                                    (92) 

Using (91) and (92), also, by taking in consideration the Weyssenhoff tensor (12), then the 

equation of motion can be written as 

        
∇̅𝑆𝛼𝛽𝛾

∇̅𝜏
= [

𝑚(𝜏),𝜖

𝑚(𝜏)
(�̅�𝛼𝜖 − 𝑈𝛼𝑈𝜖) +

1

2
(𝑅  𝜇𝜌𝜎

𝛼 − �̅�  𝜇𝜌𝜎
𝛼 ) 𝑆𝜇𝜌𝜎] 𝑆𝛽𝛾.           (93) 

Following the same rules mentioned above using (20), (21), (44)and (45) to derive 

the spin density deviation equation, we get 

∇̅2𝛹𝛼𝛽𝛾

∇̅𝜏2
= (𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
− 𝑆𝜌[𝛽𝛾�̅�   𝜌𝜖𝜎

𝛼]
) 𝑈𝜖  𝛹𝜎

+ ([
𝑚(𝜏),𝜖

𝑚(𝜏)
(�̅�𝛼𝜖 − 𝑈𝛼𝑈𝜖) +

1

2
(𝑅  𝜇𝜌𝜎

𝛼 − �̅�  𝜇𝜌𝜎
𝛼 ) 𝑆𝜇𝜌𝜎] 𝑆𝛽𝛾)

;𝛿

𝛹𝛿 

             + ([
𝑚(𝜏),𝜖

𝑚(𝜏)
(�̅�𝛼𝜖 − 𝑈𝛼𝑈𝜖) +

1

2
(𝑅  𝜇𝜌𝜎

𝛼 − �̅�  𝜇𝜌𝜎
𝛼 ) 𝑆𝜇𝜌𝜎] 𝑆𝛽𝛾)

|+
𝛿

𝛹𝛿 . (94) 

 

4.4.  Bi-metric Theories 

We proposed a Lagrangian able to describe the motion for matter and twin matter in 

case of variable mass having the following form:  

𝐿 = 𝑚(𝜏)𝑔𝜖𝜎𝑈𝜖Ψ   ;𝛼
𝜎 𝑈𝛼 + �̃�(𝜆)ℎ𝜖𝜎𝑉𝜖Φ   |||𝛼

𝜎 𝑉𝛼 + 𝑆𝜖𝜎 Ψ     ;𝛼
𝜖𝜎 𝑈𝛼 + �̃�𝜖𝜎 Φ     |||𝛼

𝜖𝜎 𝑉𝛼 

+ (𝑚(𝜏),𝜎 +
1

2𝑚(𝜏)
𝑅𝜎𝜈𝛼𝛽  𝑆𝜈𝛼𝛽) 𝛹𝜇 + (�̃�(𝜆),𝜎 +

1

2
�̃�𝜎𝜈𝛼𝛽  �̃�𝜈𝛼𝛽) Φ𝜇 .         (95) 
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Taking the variation with respect to Ψ𝛼 ,  Φ𝛼  , Ψ𝛼𝛽 𝑎𝑛𝑑  Φ𝛼𝛽, to (95), we obtain the 

following set of equations: 

D𝑈𝛼

D𝜏
=

𝑚(𝜏),𝜈

𝑚(𝜏)
(𝑔𝜇𝜈 − 𝑈𝛼𝑈𝜖) +

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜈𝜌𝜎.                                

              
D𝑉𝛼

D𝜆
=

�̃�(𝜆),𝜖

�̃�(𝜆)
(ℎ𝛼𝜖 − 𝑉𝛼𝑉𝜖) +

1

2
�̃�  𝜈𝜌𝜎

𝛼  �̃�𝜈𝜌𝜎 .                                    

                                                           
D𝑆𝛼𝛽

D𝜏
= 0.                                                      (96) 

                                                           
D�̃�𝛼𝛽

D𝜆
= 0.                                                           

Using the Weyssenhoff tensor (12), then the equations of motion can be written as 

                     
D𝑆𝛼𝛽𝛾

D𝜏
= (

𝑚(𝜏),𝜖

𝑚(𝜏)
(𝑔𝛼𝜖 − 𝑈𝛼𝑈𝜖) +

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜈𝜌𝜎) 𝑆𝛽𝛾.           (97) 

                 
D�̃�𝛼𝛽𝛾

D𝜆
= (

�̃�(𝜆),𝜖

�̃�(𝜆)
(ℎ𝛼𝜖 − 𝑉𝛼𝑉𝜖) +

1

2
�̃�  𝜈𝜌𝜎

𝛼  �̃�𝜈𝜌𝜎) �̃�𝛽𝛾.                 (98)  

Applying relations (21) and (59) together with conditions (20) and (60), we get the 

following set of equations of spin density deviation  

D2𝛹𝛼𝛽𝛾

D𝜏2
= 𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
 𝑈𝜖 𝛹𝜎 + ((

𝑚(𝜏),𝜖

𝑚(𝜏)
(𝑔𝛼𝜖 − 𝑈𝛼𝑈𝜖) +

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜈𝜌𝜎) 𝑆𝛽𝛾)

;𝛿

𝛹𝛿 . (99) 

D2Φ𝛼𝛽𝛾

D𝜆2
= �̃�𝜌[𝛽𝛾�̃�   𝜌𝜖𝜎

𝛼]
 𝑉𝜖  Φ𝜎 + ((

�̃�(𝜆),𝜖

�̃�(𝜆)
(ℎ𝛼𝜖 − 𝑉𝛼𝑉𝜖) +

1

2
�̃�  𝜈𝜌𝜎

𝛼  �̃�𝜈𝜌𝜎) �̃�𝛽𝛾)

|||𝛿

Φ𝛿 . (100) 

4.5. Bi-metric invariant-gravitation theory: Verozub Approach 

The Lagrangian function for a spinning motion in case of variable mass in this 

version can be expressed as:   

𝐿 = 𝑚(𝜏)Υ𝜖𝜎(𝜓)𝑈𝜖
D𝛹𝜎

D𝜏
+ 𝑆𝜖𝜎  

D𝛹𝜖𝜎

D𝜏
+ (𝑚(𝜏),𝜎 +

1

2
𝐾𝜇𝜈𝜖𝜎 𝑆𝜈𝜖𝜎) 𝛹𝜇 .   (101) 

By operating the Euler-Lagrangian equations (15) and (15) to (101), we get: 

                                  
D𝑈𝛼

D𝜏
=

𝑚(𝜏),𝜖

𝑚(𝜏)
(Υ𝛼𝜖 − 𝑈𝛼𝑈𝜖) +

1

2
𝐾  𝜈𝜖𝜎

𝛼  𝑆𝜈𝜖𝜎 ,               (102) 

and,  
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D𝑆𝛼𝛽

D𝜏
= 0.                                              (103) 

Using equations (102) and (103), accordingly, the equation of spinning motion can be 

written as 

                 
D𝑆𝛼𝛽𝛾

D𝜏
= (

𝑚(𝜏),𝜖

𝑚(𝜏)
(Υ𝛼𝜖 − 𝑈𝛼𝑈𝜖) +

1

2
𝐾  𝜈𝜖𝜎

𝛼  𝑆𝜈𝜖𝜎) 𝑆𝛽𝛾 .                (104) 

The equation of spin density deviation can be derived using relation (74) 

together with condition (73), as 

D2𝛹𝛼𝛽𝛾

D𝜏2
= 𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
 𝑈𝜖 𝛹𝜎 + ((

𝑚(𝜏),𝜖

𝑚(𝜏)
(Υ𝛼𝜖 − 𝑈𝛼𝑈𝜖) +

1

2
𝐾  𝜈𝜖𝜎

𝛼  𝑆𝜈𝜖𝜎) 𝑆𝛽𝛾)

||+
𝛿

𝛹𝛿 . (105) 

5. Equations of Motion for Spinning Charged Fluids and its corresponding spin 

deviation 

In this Section, we are going to demonstrate the equation of motion for spinning 

charged fluids in case of 𝑃𝜖 ≠ 𝑚𝑈𝜖.  

5.1. Rosen's Approach 

The Lagrangian function for charged spinning fluid can be suggested to have the 

form 

  𝐿 = (𝑔𝜖𝜎 − 𝛾𝜖𝜎)𝑃𝜖
∇𝛹𝜎

∇𝜏
+ 𝑆𝜖𝜎  

∇𝛹𝜖𝜎

∇𝜏
+

1

2
𝑅𝜇𝜈𝜖𝜎 𝑆𝜖𝜎𝑈𝜇𝛹𝜈 + 2𝑃[𝜖𝑈𝜎]Ψ

𝜖𝜎 

+𝑞 𝐹𝜖𝜎𝑈𝜖Ψ𝜎 +
1

2
𝑀𝜖𝜎𝐹𝜖𝜎;𝜐Ψ𝜐 +

1

2
𝑀𝜖𝜎𝐹𝜖𝜎|𝜐Ψ𝜐 − (𝑀𝜖𝜌𝐹   𝜎

𝜌
+ 𝑀𝜎𝜌𝐹   𝜖

𝜌
)Ψ𝜖𝜎. (106) 

Operating the Euler- Lagrangian equations (15) and (16), to the Lagrangian (106), we get: 

   
∇𝑃𝛼

∇𝜏
=

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜌𝜎𝑈𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖 +

1

2
𝑔𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎;𝛼 +

1

2
𝛾𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎|𝜇 , (107) 

and, 

                                 
∇𝑆𝛼𝛽

∇𝜏
= 2𝑃[𝛼𝑈𝛽] − (𝑀𝛼𝜌𝐹𝜌 

 𝛽
+ 𝑀𝛽𝜌𝐹 𝜌

  𝛼).                     (108) 

Meanwhile, from Weyssenhoff tensor (10), we can obtain the equation of motion for 

a charged spinning fluid as follow: 

 
∇𝑆𝛼𝛽𝛾

∇𝜏
= 𝑃𝛼 [2𝑃[𝛽𝑈𝛾] − (𝑀𝛽𝜌𝐹𝜌 

 𝛾
+ 𝑀𝛾𝜌𝐹 𝜌

  𝛽
)] + [

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜌𝜎𝑈𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖 
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            +
1

2
𝑔𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎;𝛼 +

1

2
𝛾𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎|𝜇 ] 𝑆𝛽𝛾                                              (109) 

Accordingly, we can obtain the equation of spin density deviation by 

applying the relation (21) and the condition taking the following form 

 
∇2𝛹𝛼𝛽𝛾

∇𝜏2
= 𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
 𝑈𝜖 𝛹𝜎 + ((2𝑃[𝛽𝑈𝛾] − (𝑀𝛽𝜌𝐹𝜌 

 𝛾
+ 𝑀𝛾𝜌𝐹 𝜌

  𝛽
)) 𝑃𝛼)

;𝛿

𝛹𝛿

+ ((2𝑃[𝛽𝑈𝛾] − (𝑀𝛽𝜌𝐹𝜌 
 𝛾

+ 𝑀𝛾𝜌𝐹 𝜌
  𝛽

)) 𝑃𝛼)
|𝛿

𝛹𝛿

+ [((
1

2
𝑅   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖 +  +

1

2
𝑀𝜖𝜎𝐹𝜖𝜎;𝛼 +

1

2
𝑀𝜖𝜎𝐹𝜖𝜎|𝛼) 𝑆𝛽𝛾)

;𝛿
 

+ ((
1

2
𝑅   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖 +

1

2
𝑀𝜖𝜎𝐹𝜖𝜎|𝛼  +

1

2
𝑀𝜖𝜎𝐹𝜖𝜎;𝛼) 𝑆𝛽𝛾)

|𝛿
] 𝛹𝛿 . (110) 

5.2. Moffat’s Approach 

We suggest the Lagrangian representing charged spinning fluid to have the form 

  𝐿 = 𝑔𝜖𝜎𝑃𝜖
∇̂𝛹𝜎

∇̂𝜏
+ 𝑆𝜖𝜎  

∇̂𝛹𝜖𝜎

∇̂𝜏
+

1

2
�̂�𝜇𝜈𝜖𝜎  𝑆𝜖𝜎𝑈𝜈𝛹𝜇 + 2𝑃[𝜖𝑈𝜎]Ψ

𝜖𝜎                       

      +𝑞 𝐹𝜖𝜎𝑈𝜖Ψ𝜎 +
1

2
𝑀𝜖𝜎𝐹𝜖𝜎||𝜐Ψ𝜐 − (𝑀𝜖𝜌𝐹   𝜎

𝜌
+ 𝑀𝜎𝜌𝐹   𝜖

𝜌
)Ψ𝜖𝜎.                   (111) 

By taking the variation with respect to Ψ𝛼  𝑎𝑛𝑑  Ψ𝛼𝛽, to the Lagrangian (111), we obtain: 

                     
∇̂𝑃𝛼

∇̂𝜏
=

1

2
�̂�   𝜇𝜖𝜎

𝛼  𝑆𝜖𝜎𝑈𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖 +

1

2
𝑔𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎||𝜇 ,               (112) 

and 

                       
∇̂𝑆𝛼𝛽

∇̂𝜏
= 2𝑃[𝛼𝑈𝛽] − (𝑀𝛼𝜌𝐹𝜌 

 𝛽
+ 𝑀𝛽𝜌𝐹 𝜌

  𝛼).                                 (113) 

Therefore, using the Weyssenhoff tensor (10), the equation of spinning motion for a 

charged spinning fluid will have the form  

∇̂𝑆𝛼𝛽𝛾

∇̂𝜏
 = 2𝑃𝛼𝑃[𝛽𝑈𝛾] − (𝑀𝛽𝜌𝐹𝜌 

 𝛾
+ 𝑀𝛾𝜌𝐹 𝜌

  𝛽
) +

1

2
�̂�  𝜇𝜖𝜎

𝛼 𝑆𝜖𝜎  𝑆𝛽𝛾𝑈𝜇  

                   +𝑞 𝐹   𝜖
𝛼 𝑈𝜖𝑆𝛽𝛾 +

1

2
𝑔𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎||𝜇𝑆𝛽𝛾.                                               (114) 
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The equation of spin density deviation can be obtained using relation (45) 

together with conditions (44), as follow 

∇̂2𝛹𝛼𝛽𝛾

∇̂𝜏2
= 𝑆𝜌[𝛽𝛾�̂�   𝜌𝜖𝜎

𝛼]
 𝑈𝜖  𝛹𝜎 + (2𝑃𝛼𝑃[𝛽𝑈𝛾] − (𝑀𝛽𝜌𝐹𝜌 

 𝛾
+ 𝑀𝛾𝜌𝐹 𝜌

  𝛽
) 

    +
1

2
�̂�  𝜇𝜖𝜎

𝛼 𝑆𝜖𝜎 𝑆𝛽𝛾𝑈𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖𝑆𝛽𝛾 +

1

2
𝑔𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎||𝜇𝑆𝛽𝛾)

||𝛿
𝛹𝛿 . (115) 

5.3. BIMOND Type Theories 

The Lagrangian of charged spinning fluid, can be suggested to have the form 

𝐿 = �̅�𝜖𝜎𝑈𝜖
∇̅𝛹𝜎

∇̅𝜏
+ 𝑆𝜖𝜎  

∇̅𝛹𝜖𝜎

∇̅𝜏
+

1

2
(𝑅𝜇𝜈𝜖𝜎 − �̅�𝜇𝜈𝜖𝜎) 𝑆𝜖𝜎𝑈𝜈𝛹𝜇 + 2�̅�[𝜖𝑈𝜎]Ψ

𝜖𝜎 

+𝑞 𝐹𝜖𝜎𝑈𝜖Ψ𝜎 +
1

2
𝑀𝜖𝜎𝐹𝜖𝜎;νΨ𝜐 +

1

2
𝑀𝜖𝜎𝐹𝜖𝜎|+

𝜈 Ψ𝜐 − (𝑀𝜖𝜌𝐹   𝜎
𝜌

+ 𝑀𝜎𝜌𝐹   𝜖
𝜌

)Ψ𝜖𝜎. (116) 

The path equations can be obtained by applying variation with respect to Ψ𝛼  𝑎𝑛𝑑  Ψ𝛼𝛽, to 

the Lagrangian (121), we get: 

∇̅𝑃𝛼

∇̅𝜏
=

1

2
(𝑅  𝜇𝜖𝜎

𝛼 − �̅�  𝜇𝜖𝜎
𝛼 ) 𝑆𝜖𝜎𝑈𝜇 + 𝑞 𝐹   𝜖

𝛼 𝑈𝜖 +
1

2
�̅�𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎;𝜇 +

1

2
�̅�𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎|+

𝜇 . (117) 

and, 

                              
∇̅𝑆𝛼𝛽

∇̅𝜏
= 2𝑃[𝛼𝑈𝛽] − (𝑀𝛼𝜌𝐹𝜌 

 𝛽
+ 𝑀𝛽𝜌𝐹 𝜌

  𝛼).                         (118) 

Meanwhile, the equation of motion for a charged spinning fluid using the Weyssenhoff 

tensor (10), can be expressed as. 

∇̅𝑆𝛼𝛽𝛾

∇̅𝜏
= 2𝑃𝛼𝑃[𝛽𝑈𝛾] − 𝑃𝛼 (𝑀𝛽𝜌𝐹𝜌 

 𝛾
+ 𝑀𝛾𝜌𝐹 𝜌

  𝛽
) +

1

2
(𝑅  𝜇𝜖𝜎

𝛼 − �̅�  𝜇𝜖𝜎
𝛼 ) 𝑆𝜖𝜎  𝑆𝛽𝛾𝑈𝜇 

           +𝑞 𝐹   𝜖
𝛼 𝑈𝜖𝑆𝛽𝛾 +

1

2
�̅�𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎;𝜇𝑆𝛽𝛾 +

1

2
�̅�𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎|+

𝜇 𝑆𝛽𝛾.                (119) 

Using the same rules mentioned above using (20), (21), (44) and (45) to derive the 

spin density deviation equation, we obtain 

∇̅2𝛹𝛼𝛽𝛾

∇̅𝜏2
= (𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
− 𝑆𝜌[𝛽𝛾�̅�   𝜌𝜖𝜎

𝛼]
) 𝑈𝜖  𝛹𝜎

+ (2�̅�𝛼�̅�[𝛽𝑈𝛾] − 𝑃𝛼 (𝑀𝛽𝜌𝐹𝜌 
 𝛾

+ 𝑀𝛾𝜌𝐹 𝜌
  𝛽

))
;𝛿

𝛹𝛿 
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+ (2�̅�𝛼�̅�[𝛽𝑈𝛾] − 𝑃𝛼 (𝑀𝛽𝜌𝐹𝜌 
 𝛾

+ 𝑀𝛾𝜌𝐹 𝜌
  𝛽

))
|+
𝛿

𝛹𝛿                            

+ ((
1

2
𝑅   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖 +

1

2
�̅�𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎;𝜇 

+
1

2
�̅�𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎|+

𝜇 𝑆𝛽𝛾) 𝑆𝛽𝛾)
;𝛿

𝛹𝛿 + ((
1

2
�̅�   𝜇𝜖𝜎

𝛼  𝑈𝜇 𝑆𝜖𝜎 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖 + +

1

2
�̅�𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎;𝜇         

+
1

2
�̅�𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎|+

𝜇 𝑆𝛽𝛾) 𝑆𝛽𝛾)
|+
𝛿

𝛹𝛿                                                                 (120)  

5.4.  Bi-metric Theories  

It has been proposed that the Lagrangian of charged spinning fluid describing matter 

and twin matter has the form:  

𝐿 = 𝑔𝜖𝜎𝑃𝜖Ψ   ;𝛼
𝜎 𝑈𝛼 + ℎ𝜖𝜎�̃�𝜖Φ   |||α

𝜎 𝑉𝛼 + 𝑆𝜖𝜎 Ψ     ;𝛼
𝜖𝜎 𝑈𝛼 + �̃�𝜖𝜎 Φ    |||α

𝜖𝜎 𝑉𝛼 + 2𝑃[𝜖𝑈𝜎]Ψ
𝜖𝜎 

+
1

2
𝑅𝜇𝜈𝜖𝜎𝑆𝜖𝜎𝑈𝜈𝛹𝜇 +

1

2
�̃�𝜇𝜈𝜖𝜎�̃�𝜖𝜎𝑉𝜈Φ𝜇 + 2�̃�[𝜖𝑉𝜎]Φ

𝜖𝜎 + 𝑞 𝐹𝜖𝜎𝑈𝜖Ψ𝜎 +
1

2
𝑀𝜖𝜎𝐹𝜖𝜎:𝜐Ψ𝜐 

−(𝑀𝜖𝜌𝐹   𝜎
𝜌

+ 𝑀𝜎𝜌𝐹   𝜖
𝜌

)Ψ𝜖𝜎 + 𝑞 𝐹𝜖𝜎𝑉𝜖Φ𝜎 +
1

2
𝑀𝜖𝜎𝐹𝜖𝜎|||𝜐Φ𝜐

− (𝑀𝜖𝜌𝐹   𝜎
𝜌

+ 𝑀𝜎𝜌𝐹   𝜖
𝜌

)Φ𝜖𝜎. (121) 

By operating the variation with respect to 𝛹𝛼 and Φ𝛼 𝛹𝛼𝛽 and Φ𝛼𝛽, to the Lagrangian 

(121), we get the following set of equations 

              
D𝑃𝛼

D𝜏
=

1

2
𝑅  𝜇𝜌𝜎

𝛼  𝑆𝜌𝜎𝑈𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖 +

1

2
𝑔𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎;𝜇 ,       

D�̃�𝛼

D𝜆
=

1

2
�̃�  𝜇𝜌𝜎

𝛼  �̃�𝜌𝜎𝑉𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑉𝜖 +

1

2
ℎ𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎|||𝜇 ,   

                              
D𝑆𝛼𝛽

D𝜏
= 2𝑃[𝛼𝑈𝛽] − (𝑀𝛼𝜌𝐹𝜌 

 𝛽
+ 𝑀𝛽𝜌𝐹 𝜌

  𝛼),                               (122)       

D�̃�𝛼𝛽

D𝜆
= 2�̃�[𝛼𝑉𝛽] − (𝑀𝛼𝜌𝐹𝜌 

 𝛽
+ 𝑀𝛽𝜌𝐹 𝜌

  𝛼).                           

Using the Weyssenhoff tensor (10), then we get the equations of motion for spinning fluid 

as follow: 

D𝑆𝛼𝛽𝛾

D𝜏
= 𝑃𝛼 (2𝑃[𝛽𝑈𝛾] − (𝑀𝛽𝜌𝐹𝜌 

 𝛾
+ 𝑀𝛾𝜌𝐹 𝜌

  𝛽
)) + (

1

2
𝑅  𝜇𝜖𝜎

𝛼  𝑆𝜖𝜎𝑈𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖       

+
1

2
𝑔𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎;𝜇) 𝑆𝛽𝛾.                                                                                  (123) 

D�̃�𝛼𝛽𝛾

D𝜆
= �̃�𝛼(2�̃�[𝛽𝑉𝛾] − (𝑀𝛽𝜌𝐹𝜌 

 𝛾
+ 𝑀𝛾𝜌𝐹 𝜌

  𝛽
))

+ (
1

2
 �̃�  𝜇𝜖𝜎

𝛼  �̃�𝜖𝜎 𝑉𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑉𝜖 +

1

2
ℎ𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎|||𝜇) �̃�𝛽𝛾 .                       (124) 
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Applying relations (21) and (60) together with conditions (20) and (59), we can get 

equations of spin density deviation  

D2𝛹𝛼𝛽𝛾

D𝜏2
= 𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
𝑈𝜖 𝛹𝜎 + [�̃�𝛼(2�̃�[𝛽𝑉𝛾] − 𝑀𝛽𝜌𝐹𝜌 

 𝛾
− 𝑀𝛾𝜌𝐹 𝜌

  𝛽
) 

+ (
1

2
𝑅  𝜇𝜖𝜎

𝛼  𝑆𝜖𝜎𝑈𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖 +

1

2
𝑔𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎;𝜇) 𝑆𝛽𝛾]

;𝛿
𝛹𝛿 

D2Φ𝛼𝛽𝛾

D𝜆2
= 𝑆𝜌[𝛽𝛾𝑅   𝜌𝜖𝜎

𝛼]
𝑈𝜖 Φ𝜎 + [�̃�𝛼(2�̃�[𝛽𝑉𝛾] − (𝑀𝛽𝜌𝐹𝜌 

 𝛾
+ 𝑀𝛾𝜌𝐹 𝜌

  𝛽
)) 

   + (
1

2
 �̃�  𝜇𝜖𝜎

𝛼  �̃�𝜖𝜎 𝑉𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑉𝜖 +

1

2
ℎ𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎|||𝜇) �̃�𝛽𝛾]

|||𝛿
Φ𝛿 .      (125)  

5.5. Bi-metric invariant-gravitation theory: Verozub Approach 

We propose the Lagrangian of charged spinning fluid according to this version, to 

take the form 

𝐿 = Υ𝜖𝜎(𝜓)�̌�𝜖
D𝛹𝜎

D𝜏
+ 𝑆𝜖𝜎  

D𝛹𝜖𝜎

D𝜏
+

1

2
𝐾𝜇𝜈𝜖𝜎  𝑆𝜖𝜎𝑈𝜈𝛹𝜇 + 2�̌�[𝜖𝑈𝜎]Ψ

𝜖𝜎 

            +𝑞 𝐹𝜖𝜎𝑈𝜖Ψ𝜎 +
1

2
𝑀𝜖𝜎𝐹𝜖𝜎||+

𝜈 Ψ𝜐 − (𝑀𝜖𝜌𝐹   𝜎
𝜌

+ 𝑀𝜎𝜌𝐹   𝜖
𝜌

)Ψ𝜖𝜎.         (126) 

Varying the above Lagrangian with respect to 𝛹𝛼 and 𝛹𝛼𝛽, we get 

             
D�̌�𝛼

D𝜏
=

1

2
𝐾  𝜇𝜖𝜎

𝛼  𝑆𝜖𝜎𝑈𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖 +

1

2
Υ𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎;𝜇 ,                       (127) 

and, 

                          
D𝑆𝛼𝛽

D𝜏
= 2�̌�[𝛼𝑈𝛽] − (𝑀𝛼𝜌𝐹𝜌 

 𝛽
+ 𝑀𝛽𝜌𝐹 𝜌

  𝛼).                    (128) 

Consequently, we can get the equation of motion for spinning fluid using the Weyssenhoff 

tensor (10) as follow: 

D𝑆𝛼𝛽𝛾

D𝜏
= �̌�𝛼(2�̌�[𝛽𝑈𝛾] − (𝑀𝛽𝜌𝐹𝜌 

 𝛾
+ 𝑀𝛾𝜌𝐹 𝜌

  𝛽
))

+ (
1

2
𝐾  𝜇𝜖𝜎

𝛼  𝑆𝜖𝜎𝑈𝜇 + 𝑞 𝐹   𝜖
𝛼 𝑈𝜖 +

1

2
Υ𝛼𝜇𝑀𝜖𝜎𝐹𝜖𝜎;𝜇) 𝑆𝛽𝛾.                         (129) 

Applying (74) and the condition (73) consequently, it is easy to derive the equation 

of spinning density deviation, as follow  

D2𝛹𝛼𝛽𝛾

D𝜏2
= 𝑆𝜌[𝛽𝛾𝐾   𝜌𝜖𝜎

𝛼]
𝑈𝜖  𝛹𝜎 + [�̌�𝛼(2�̌�[𝛽𝑈𝛾] − (𝑀𝛽𝜌𝐹𝜌 

 𝛾
+ 𝑀𝛾𝜌𝐹 𝜌

  𝛽
)) 
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6. Discussion 

Equations of motion for spinning fluids in different versions of bi-metric theories 

are obtained. The basic idea for developing such a type of equations is the ability to examine 

several cases for particles orbiting strong fields.  The problem of motion is vital to test the 

behaviour of different particles starting from microscopic to macroscopic objects.  

Due to this wide spectrum, the usual notation of finding test particle as a probe to 

examine the viability of any gravitational field theory becomes irrelevant.  Accordingly, the 

demand to find equations of motion for objects having some intrinsic properties such 

spinning, charged and spinning charged ones led authors to replace it for examining the 

stability problem for objects orbing strong gravitational fields [32].   

Moreover, in order to examine through an insightful vision the behaviour of 

particles in strong fields, it becomes mandatory to obtain equations of motion for spinning 

fluids as they act an active role in the accretion disk orbiting the active galactic nucleic like 

the supermassive black hole SgrA*.  From this perspective we have obtain equations of 

spinning fluids in different types of Bi-metric theories of gravity as in equations (19), (26), 

(31), (38), (43), (50), (57), (58), (64), (65), (71) and (78) as well as their corresponding 

deviation equations. We also have extended this work to study some intrinsic properties of 

the fluid like the case of variable mass which may give an account to reveal the puzzle of 

dark matter nearby strong fields of gravity. Not only this but also, we have obtained the 

equations of charged spinning fluids in strong gravitational fields of gravity for different 

versions of bi metric theories as explained in Equations (109), (114), (123), (124) and (129) 

as well as their corresponding deviation equations (110), (115), (120), (125) and (130).  

   Such a finding will be become a glimpse to examine the behaviour of plasma 

physics in strong gravitational fields which will be studied in our future work.     
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